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Preface

This book has its origins in John Campbell’s graduate class in asset pricing
at Harvard University in 1995-96. The course emphasized a simplified
approach to the difficult problem of intertemporal asset pricing, in which
nonlinear equations are approximated by loglinear equations that capture
much of the economics of the problem. Luis Viceira, the teaching fellow for
the course, proposed that a similar approach could be used to study portfolio
choice. This became the basis of Viceira’s Harvard PhD thesis, on labor
income risk and portfolio choice, and of a series of joint papers studying
various types of asset risk: the risk of a changing equity premium (Campbell
and Viceira 1999), the risks of changing real interest rates and inflation
(Campbell and Viceira 2000), and the risk of changing volatility (Chacko
and Viceira 1999). At the same time, a number of other financial economists
realized that portfolio choice theory, long a rather quiet backwater of finance,
was again an exciting frontier. Papers by Kim and Omberg (1996), Brennan,
Schwartz, and Lagnado (1997), Brennan (1998), Barberis (1999), Brandt
(1999) and others have radically altered our understanding of this important
subject.

In 1999, Campbell delivered three Clarendon Lectures at Oxford sum-
marizing a large part of this literature. His first lecture covered the material
in Chapters 1 through 3 of this book; his second lecture presented the mate-
rial in Chapter 4; and his last lecture discussed material in Chapters 6 and
7. This book further expands the scope of the discussion in an attempt to
survey all the major themes of the portfolio choice literature in the years
leading up to 2000.

There has always been a tension in economics between the attempt to de-
scribe the optimal choices of fully rational individuals (“positive economics”)
and the desire to use our models to improve people’s imperfect choices (“nor-
mative economics”). The desire to improve the world with economics was
well expressed by Keynes (1930): “If economists could manage to get them-
selves thought of as humble, competent people, on a level with dentists,
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that would be splendid!” For much of the 20th Century, economists con-
centrated on improving economic outcomes through government economic
policy; Keynes may have imagined the economist as orthodontist, interven-
ing with the painful but effective tools of monetary and fiscal policy. Today,
dentists spend much of their time giving advice on oral hygiene; similarly,
economists can try to provide useful advice to improve the myriad economic
decisions that private individuals are asked to make. This book represents
an attempt at normative economics of this sort.

Of course, optimal portfolio decisions depend on the details of the envi-
ronment: the financial assets that are available, their expected returns and
risks, and the preferences and circumstances of investors.  These details
become particularly important for long-term investors, who are the subject
of this book. Such investors must concern themselves not only with ex-
pected returns and risks today, but with the way in which expected returns
and risks may change over time. They must also consider their income
today and their income prospects for the future. Accordingly this book
emphasizes the statistical analysis of asset returns and of income.

Academic economists are not the only, or even the leading source of finan-
cial advice for long-term investors. A sizeable financial planning industry
has arisen to help people save for retirement. This industry is highly sophis-
ticated in some respects (for example in tax planning), but tends to rely on
rules of thumb to guide the tradeoff between risk and return. Conservative
investors, for example, are advised to hold fewer equities and more bonds
than aggressive investors; younger investors are told that it is appropriate
for them to take greater equity risk than older investors. An important
purpose of this book is to evaluate such rules of thumb and place them on
a firm scientific foundation.
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Chapter 1

Introduction

One of the most important decisions many people face is the choice of a
portfolio of assets for retirement savings. These assets may be held as a
supplement to defined-benefit public or private pension plans; or they may
be accumulated in a defined-contribution pension plan, as the major source
of retirement income. In either case, a dizzying array of assets is available.

Consider for example the increasing set of choices offered by TIAA-
CREF, the principal pension organization for university employees in the
United States. Until 1988, the two available choices were TIAA, a tradi-
tional nominal annuity, and CREF, an actively managed equity fund. Funds
could readily be moved from CREF to TIAA, but the reverse transfer was
difficult and could only be accomplished gradually. In 1988, it became
possible to move funds between two CREF accounts, a money market fund
and an equity fund. Since then, other choices have been added: a bond
fund and a socially responsible stock fund in 1990, a global equity fund in
1992, equity index and growth funds in 1994, a real estate fund in 1995, and
an inflation-indexed bond fund in 1997. Retirement savings can easily be
moved among these funds, each of which represents a broad class of assets
with a different profile of returns.

Institutional investors also face complex decisions. Some institutions
invest on behalf of their clients, but others, such as foundations and univer-
sity endowments, are more similar to individuals in that they seek to finance
a long-term stream of discretionary spending. The investment options for
these institutions have also expanded enormously since the days when a
portfolio of government bonds was the norm.

What does financial economics have to say about these investment de-
cisions? Modern finance theory is often thought to have started with the
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mean-variance analysis of Markowitz (1952); this makes portfolio choice the-
ory the original subject of modern finance. Markowitz showed how investors
should pick assets if they care only about the mean and variance—or equiv-
alently the mean and standard deviation—of portfolio returns over a single
period.

The results of his analysis are shown in the standard mean-standard
deviation diagram, Figure 1.1. (A much more careful mathematical expla-
nation can be found in the next chapter.) For simplicity the figure considers
three assets, stocks, bonds, and cash (not literally currency, but a short-term
money market fund). The vertical axis shows expected return, and the hori-
zontal axis shows risk as measured by standard deviation. Stocks are shown
as offering a high mean return and a high standard deviation, bonds a lower
mean and lower standard deviation. Cash has a lower mean return again,
but is riskless over one period, so it is plotted on the vertical zero-risk axis.
(In the presence of inflation risk, nominal money market investments are
not literally riskless in real terms, but this short-term inflation risk is small
enough that it is conventional to ignore it. We follow this convention here
and return to the issue in the next chapter.)

The curved line in Figure 1.1 shows the set of means and standard
deviations that can be achieved by combining stocks and bonds in a risky
portfolio. When cash is added to a portfolio of risky assets, the set of
means and standard deviations that can be achieved is a straight line on
the diagram connecting cash to the risky portfolio. An investor who cares
only about the mean and standard deviation of his portfolio will choose a
point on the straight line illustrated in the figure, that is tangent to the
curved line. This straight line, the mean-variance efficient frontier, offers
the highest mean return for any given standard deviation. The point where
the straight line touches the curved line is a “tangency portfolio” of risky
assets, marked in the figure as “Best Mix of Stocks and Bonds”.

The striking conclusion of this analysis is that all investors who care only
about mean and standard deviation will hold the same portfolio of risky as-
sets, the unique best mix of stocks and bonds. Conservative investors will
combine this portfolio with cash to achieve a point on the mean-variance effi-
cient frontier that is low down and to the left; moderate investors will reduce
their cash holdings, moving up and to the right; aggressive investors may
even borrow to leverage their holdings of the tangency portfolio, reaching a
point on the straight line that is even riskier than the tangency portfolio.
But none of these investors should alter the relative proportions of risky
assets in the tangency portfolio. This result is the mutual fund theorem of
Tobin (1958).
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Figure 1.1: Mean-standard deviation diagram
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Financial planners have traditionally resisted the simple investment ad-
vice embodied in Figure 1.1. This resistance may to some extent be self-
serving; as Peter Bernstein points out in his 1992 book Capital Ideas, many
financial planners and advisers justify their fees by emphasizing the need
for each investor to build a portfolio reflecting his or her unique personal
situation. Bernstein calls this the “interior decorator fallacy”, the view
that portfolios should reflect personal characteristics in the same way that
interior decor reflects personal taste.!

Financial planners’ advice does however follow some systematic patterns,
and these patterns should be treated with respect. We shall argue in this
book that the traditional academic analysis of portfolio choice needs to be
modified to handle long investment horizons and labor income; the necessary
modifications partially justify, but also qualify, several of the patterns that
we see in conventional financial planning advice.

One strong pattern is the tendency for financial planners to encourage
young investors, with a long investment horizon, to take more risk than older
investors. The single-period mean-variance analysis illustrated in Figure
1.1 assumes a short investment horizon. In this book we shall explore the
conditions under which a long investment horizon indeed justifies greater
risk-taking.

A second pattern in financial planning advice is that conservative in-
vestors are typically encouraged to hold more bonds, relative to stocks, than
aggressive investors, contrary to the constant bond-stock ratio illustrated in
Figure 1.1. Canner, Mankiw, and Weil (1997) call this the asset allocation
puzzle.  Figure 1.2, which reproduces Table 1 from Canner, Mankiw, and
Weil’s article, illustrates the asset allocation puzzle. The table summa-
rizes model portfolios recommended by four different investment advisers in
the early 1990’s: Fidelity, Merrill Lynch, the financial journalist Jane Bryant
Quinn, and the New York Times. While the portfolios differ in their details,
in every case the recommended ratio of bonds to stocks is higher for moder-
ate investors than for aggressive investors, and higher again for conservative
investors.

! An amusing recent example is the PaineWebber advertisement that ran in the New
Yorker in 1998: “If our clients were all the same, their portfolios would be too. They
say the research has been sifted. The numbers have been crunched. The analysts have
spoken: Behold! The ideal portfolio. We say building a portfolio is not ‘one size fits all.’
It begins with knowing you—how you feel about money, how much risk you can tolerate,
your hopes for your family, and for your future. By starting with the human element,
our Financial Advisors can do something a black box can’t do—take the benefits of what
PaineWebber has to offer and create an investment plan unique to you.”
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CANNER ET AL : AN ASSET ALLOCATION PUZZLE
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Figure 1.2: The Asset Allocation Puzzle
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One possible explanation for this pattern of advice is that aggressive
investors are unable to borrow at the riskless interest rate, and thus cannot
reach the upper right portion of the straight line in Figure 1.1. In this
situation, aggressive investors should move along the curved line, increasing
their allocation to stocks and reducing their allocation to bonds. The
difficulty with this explanation is that it only applies once the constraint on
borrowing starts to bind on investors, that is, once cash holdings have been
reduced to zero; but the bond-stock ratio in Canner, Mankiw, and Weil’s
Table 1 varies even when cash holdings are positive. Elton and Gruber
(2000) respond to this difficulty by arguing that these cash holdings are a
special liquidity reserve determined outside the mean-variance analysis. It
is quite plausible that the 5% cash holdings suggested by Fidelity and Merrill
Lynch are a liquidity reserve, but the other cash holdings in the table appear
too large to be explained in this manner.

This book argues that it is possible to make sense of both the asset allo-
cation puzzle, and the tendency of financial planners to recommend riskier
portfolios to young investors. The key is to recognize that optimal portfo-
lios for long-term investors need not be the same as for short-term investors.
Long-term investors, who value wealth not for its own sake but for the stan-
dard of living that it can support, may judge risks very differently from
short-term investors. Cash, for example, is risky in the long term even
though it is safe in the short term, because cash holdings must be reinvested
in the future at unknown real interest rates. Inflation-indexed bonds, on
the other hand, provide a known stream of long-term real payments even
though their capital value is uncertain in the short term. There is con-
siderable evidence that stocks, too, can support a stable standard of living
more successfully than their short-term price variability would indicate. For
these reasons a long-term investor may be willing to hold more stocks and
bonds, and less cash, than a short-term investor would do; and a conser-
vative long-term investor may hold a portfolio that is dominated by bonds
rather than cash.

Labor income is also important for long-term investors. One can think
of working investors as implicitly holding an asset, human capital, whose
dividends equal labor income. This asset is nontradable, so investors cannot
sell it; but they can adjust their financial asset holdings to take account
of their implicit holdings of human capital. For most investors, human
capital is sufficiently stable in value to tilt financial portfolios towards greater
holdings of risky assets.

The rest of the book is organized as follows. Chapter 2 first reviews
the traditional mean-variance analysis, showing how it can be founded on
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utility theory. The chapter argues that the benchmark model of utility
should assume that relative risk aversion is independent of wealth. With
this assumption, there are well-known conditions under which long-term in-
vestors should invest myopically, choosing the same portfolios as short-term
investors. Chapter 2 explains these conditions, due originally to Merton
(1969) and Samuelson (1969): Myopic portfolio choice is optimal if investors
have no labor income and investment opportunities are constant over time.
If investors have relative risk aversion equal to one, then myopic portfolio
choice is optimal even if investment opportunities are time-varying. Al-
though these conditions are simple, they are widely misunderstood and the
chapter makes an effort to address fallacies that commonly arise in popular
discussion.

Legitimate arguments for horizon effects on portfolio choice depend on
violations of the Merton-Samuelson conditions. Chapters 3 through 7 ex-
plore such violations. Chapter 3 argues that investment opportunities are
not constant because real interest rates move over time. Even if expected
excess returns on risky assets over safe assets are constant, time-variation
in real interest rates is enough to generate large differences between optimal
portfolios for long-term and short-term investors. The chapter shows that
conservative long-term investors should hold portfolios that consist largely
of long-term bonds. These bonds should be inflation-indexed if possible;
however nominal bonds may be adequate substitutes for inflation-indexed
bonds if inflation risk is modest, as it has been in the United States since
the early 1980’s.

The assumption of constant risk premia in Chapter 3 implies that op-
timal portfolios are constant over time for both short-term and long-term
investors. Chapter 4 allows for time-variation in the expected excess returns
on stocks and bonds, which generates time-variation in optimal portfolios.
Both short-term and long-term investors should seek to “time the markets”,
holding more risky assets at times when the rewards for doing so are high.
But in addition, long-term investors with relative risk aversion greater than
one should increase their average holdings of risky assets whose returns are
negatively correlated with the rewards for riskbearing; for example, they
should increase their average allocation to stocks because the stock mar-
ket appears to mean-revert, doing relatively poorly after price increases and
relatively well after price declines. These findings are an empirical devel-
opment of Merton’s (1973) theoretical concept of intertemporal hedging by
long-term investors.

Chapter 5 seeks to relate the results of Chapters 3 and 4 more closely to
the extensive theoretical literature set in continuous time. Explicit solutions

7
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for optimal portfolios are provided in Chapters 3 and 4 by the use of loglin-
ear approximations to discrete-time Euler equations and budget constraints.
Chapter 5 clarifies the conditions under which such approximate solutions
hold exactly, and shows how equivalent approximations can be used in con-
tinuous time. This chapter also explores optimal portfolio choice in the
presence of time-varying stock market risk. Chapter 5 is the most tech-
nically demanding chapter in the book, and less mathematical readers can
skip it without loss of continuity.

Chapters 6 and 7 introduce labor income into the long-term portfolio
choice problem. Chapter 6 discusses labor income in a stylized two-period
model and a fairly abstract infinite-horizon setting, while Chapter 7 embeds
labor income in a life-cycle model and asks how investors should adjust
their portfolios as they age. This chapter also reviews the existing empirical
evidence on how investors actually do invest over the life cycle. The current
draft of this book omits Chapters 6 and 7.



Chapter 2

Myopic Portfolio Choice

In this chapter we review the theory of portfolio choice for short-term in-
vestors, and explain those special cases in which long-term investors should
make the same choices as short-term investors. In these special cases the
investment horizon is irrelevant; portfolio choice is said to be myopic, be-
cause investors ignore what will happen beyond the immediate next period.
Throughout the chapter we assume that investors have financial wealth but
no labor income.

Section 2.1 describes optimal portfolio choice for short-term investors.
We begin in section 2.1.1 with the classic mean-variance analysis, assuming
that investors care directly about the mean and variance of portfolio returns
over one period. Then in section 2.1.2 we derive similar results assuming
that investors have a utility function defined over wealth at the end of one
period. We discuss alternative assumptions that can be made about util-
ity, arguing that there are good reasons to prefer scale-independent utility
functions in which relative risk aversion does not depend on wealth. The
simplest scale-independent utility function is power utility, and we show how
to derive portfolio results analogous to those of the mean-variance analysis,
assuming power utility and lognormally distributed returns.

In section 2.2 we derive conditions under which the same portfolio choice
is optimal for long-term investors. We first assume in section 2.2.1 that
investors have power utility defined over wealth many periods ahead, and
show that if investors can rebalance their portfolios each period, they should
invest myopically if asset returns are independent and identically distributed
(IID) over time, or if utility takes the log form. Log utility is the special
case of power utility in which both the coefficient of relative risk aversion
and the elasticity of intertemporal substitution in consumption equal one.
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The conditions for myopic portfolio choice are quite simple, and can
be derived without the use of advanced mathematics. Nonetheless these
conditions are widely misunderstood, and one often sees specious arguments
that there should be horizon effects even when the conditions hold. In
section 2.2.2 we try to expose the fallacies in these arguments.

In section 2.2.3 we consider investors who have power utility defined over
consumption, and show that portfolio choice will be myopic under the same
conditions as before. Finally, in section 2.2.4 we introduce a generalization
of power utility, Epstein-Zin utility, which allows us to distinguish between
the coeflicient of risk aversion and the elasticity of intertemporal substitution
in consumption. Power utility links these concepts tightly together, making
one the reciprocal of the other, but they are different concepts that play quite
different roles in the analysis. We show that portfolio choice is myopic if
relative risk aversion equals one, regardless of the value of the elasticity of
intertemporal substitution in consumption. Epstein-Zin utility will be used
extensively in the rest of the book.

Throughout the chapter there is a strong emphasis on the difference
between simple returns and log returns, and on the adjustments that are
needed to translate from one type of return to the other. Elementary
treatments of portfolio choice often gloss over this difference, but it is central
to the theory of portfolio choice for long-term investors.

2.1 Short-term portfolio choice

2.1.1 Mean-variance analysis

Choosing the weight on a single risky asset

Consider the following classic portfolio choice problem. Two assets are
available to an investor at time ¢. One is riskless, with simple return Ry ;1
from time t to time ¢ + 1, and one is risky. The risky asset has simple
return Ry from time ¢ to time ¢ + 1, with conditional mean E;R;+; and
conditional variance o7. Note the timing convention that returns are given
time subscripts for the date at which they are realized; the riskfree interest
rate is realized at ¢ + 1 but is known one period in advance at time ¢.
The conditional mean and conditional variance are the mean and variance
conditional on the investor’s information at time ¢, thus they are given ¢
subscripts.

The investor puts a share a; of his portfolio into the risky asset. Then

10
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the portfolio return is
Rytv1=Rip1 + (L — )Ry = Ry +ay(Repr — Rppyr). (2.1)

The mean portfolio return is E;Rp, ;11 = Ry 11+ ay(E¢Riy1 — Ryy41), while
the variance of the portfolio return is J;%t = afo?.

The investor prefers a high mean and a low variance of portfolio returns.
We assume that the investor trades off mean and variance in a linear fashion.
That is, the investor maximizes a linear combination of mean and variance,

with a positive weight on mean and a negative weight on variance:

k
max(EeRpp+1 — 5 2)- (22)

Substituting in the mean and variance of portfolio returns, and subtract-
ing Rf4y1 (which does not change the maximization problem), this can be
rewritten as

k
max ay(E¢Rip1 — Rpgq1) — 504?0?. (2.3)

The solution to this maximization problem is

_ EtRip1 — Rf,t+1

2.4

0%
The portfolio share in the risky asset should equal the expected excess re-
turn, or risk premium, divided by conditional variance times the coefficient
k that represents aversion to variance. @ We will see similar expressions
frequently in this book.
A useful concept in portfolio analysis is the Sharpe ratio S, defined as
the ratio of mean excess return to standard deviation:

_ EtRi11 — Ryt

S, 2.5
¢ p (2.5)
The portfolio solution can be rewritten as
St
= —. 2.6
a kUt ( )

The mean excess return on the portfolio is S?/k and the variance of the
portfolio is S?/k2, so the ratio of mean to variance is 1/k. The standard
deviation of the portfolio is S;/k, and so the Sharpe ratio of the portfolio is
St. In this simple model, all portfolios have the same Sharpe ratio because
they all contain the same risky asset in greater or smaller amount.

11
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Mean-variance analysis with many risky assets

These results extend straightforwardly to the case where there are many
risky assets. We define the portfolio return in the same manner as before,
except that we use lowercase boldface letters to denote vectors and uppercase
boldface letters to denote matrices. Thus R4 is now a vector of risky
returns with N elements. It has a mean vector E;:R;y; and a variance-
covariance matrix ;. Also, ay is now a vector of allocations to the risky
assets. The maximization problem (2.3) now becomes

k
H(llat,X aQ(EthH — Rf’tJrlL) — EaQEtat. (27)

Here ¢ is a vector of ones, and (E;Ri41 — Rys1t) is the vector of excess
returns on the IV risky assets over the riskless interest rate. The variance
of the portfolio return is o} ;.

The solution to this maximization problem is

| —
ap = EEt (Eth+1 — Rf7t+1b). (28)
This is a straightforward generalization of the solution with a single risky
asset. The single excess return is replaced by a vector of excess returns, and
the reciprocal of variance is replaced by X, 1 the inverse of the variance-
covariance matrix of returns.

The investor’s preferences enter the solution (2.8) only through the scalar
term 1/k. Thus investors differ only in the overall scale of their risky asset
position, not in the composition of that position. Conservative investors
with a high k hold more of the riskless asset and less of all risky assets, but
they do not change the relative proportions of their risky assets which are
determined by the vector ;' (E;Ry41 — Rys41¢). This is the mutual fund
theorem of Tobin (1958), as illustrated in Figure 1.1.

The results also extend straightforwardly to the case where there is no
completely riskless asset. We can still define a benchmark asset with return
Ro 41, and define excess returns relative to this benchmark return. The
variance of the portfolio return is Vary(Ro 1) + a; 30 + 20070, where
32; is now defined to be the conditional variance-covariance matrix of excess
returns over the benchmark asset, and o, is a vector containing the covari-
ances of the excess returns on the other assets with the benchmark return.
(We use a boldface lowercase rather than a boldface uppercase sigma for oo
because this is a vector rather than a matrix. Throughout the book we will
use a boldface lowercase sigma, with a suitable subscript, to denote a vector

12
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of covariances between excess returns and the subscripted variable. Abusing
this notation slightly, we will also write o7 for the vector of excess-return
variances.)

With no riskless asset, the solution becomes

1

szl(EthH — Rog1t) — B oo (2.9)

oy =
This has almost the same form as before, except that the relation between
portfolio weights and average excess returns is now linear rather than pro-
portional. The intercept is the minimum-variance portfolio of all assets,
-3 Yoo, which does not place 100% weight in the benchmark asset if the
benchmark asset is risky. It is no longer true that all investors hold risky
assets in the same proportions; instead they hold some combination of two
risky mutual funds, whose proportions are given by the two terms on the
right-hand side of (2.9). If the benchmark asset has low risk, however,
as is the case empirically for Treasury bills and other short-term debt in-
struments, then there is little difference between the solution (2.9) and the
riskless-asset solution (2.8).

2.1.2 Specifying utility of wealth
Basics of utility theory

So far we have assumed that investors care directly about the mean and
the variance of portfolio returns. Similar results are available if we assume
instead that investors have utility defined over wealth at the end of the
period. In this case we redefine the maximization problem as

max E;U(Wyiq) (2.10)

subject to
Wt+1 - (1 + R ,t+1)Wt- (211)

Here U(W¢41) is a standard concave utility function, as illustrated in
Figure 2.1. The curvature of the utility function implies that the investor is
averse to risk. Consider for example an investor with initial wealth W; who
is offered a risky gamble that will either add or subtract an amount G to
wealth, with equal probabilities of the two outcomes. If the investor turns
down the gamble, wealth is certain and utility is U(W;). If the investor
accepts the gamble, there is a one-half chance that wealth will go up to
Wi+ G and a one-half chance that it will fall to Wy —G. Expected utility is

13
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(1/2)U(Wi+G) + (1/2)U(Wy — G), which is less than U(W;) because of the
curvature of the utility function. Thus the investor turns down the gamble;
it offers only risk without any accompanying reward, and is unattractive to
a risk-averse investor.

The degree of curvature of the utility function determines the intensity
of the investor’s risk aversion. Curvature can be measured by the second
derivative of the utility function with respect to wealth, scaled by the first
derivative to eliminate any dependence of the measure of curvature on the
arbitrary units in which utility is measured. The coefficient of absolute risk
aversion is then defined as

u’(w)
A = —— 2.12
and the coefficient of relative risk aversion is defined as
wu'(w)
=WA =—— 2.1
R(W) =WA(W) ) (2.13)

The reciprocals of these measures are called absolute and relative risk toler-
ance.

Classic results of Pratt (1964) say that for small gambles, the coefficient
of absolute risk aversion determines the absolute dollar amount that an
investor is willing to pay to avoid a gamble of a given absolute size. It is
commonly thought that absolute risk aversion should decrease, or at least
should not increase, with wealth. Introspection suggests that a billionaire
will be relatively unconcerned with a risk that might worry a poor person,
and will pay less to avoid such a risk.

The coefficient of relative risk aversion determines the fraction of wealth
that an investor will pay to avoid a gamble of a given size relative to wealth.
A plausible benchmark model makes relative risk aversion independent of
wealth. In this case people at all levels of wealth make the same decisions,
when both risks and the costs of avoiding them are expressed as fractions
of wealth.

The long-run behavior of the economy suggests that relative risk aversion
cannot depend strongly on wealth. Per capita consumption and wealth
have increased greatly over the past two centuries. Since financial risks
are multiplicative, this means that the absolute scale of financial risks has
also increased while the relative scale is unchanged. Interest rates and
risk premia do not show any evidence of long-term trends in response to
this long-term growth; this implies that investors are willing to pay almost

14
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Figure 2.1: Concave utility of wealth
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the same relative costs to avoid given relative risks as they did when they
were much poorer, which is only possible if relative risk aversion is almost
independent of wealth.

The form of the utility function

Tractable models of portfolio choice require assumptions about the form
of the utility function, and possibly distributional assumptions about asset
returns. Three alternative sets of assumptions produce simple results that
are consistent with those of mean-variance analysis:

1. Investors have quadratic utility defined over wealth. In this case
UWit1) = a+ bWit1. Under this assumption maximizing expected
utility, as in (2.10), is equivalent to maximizing a linear combination
of mean and variance, as in (2.2). No distributional assumptions are
needed on asset returns. Quadratic utility implies that absolute risk
aversion and relative risk aversion are increasing in wealth.

2. Investors have exponential utility, U(W;y1) = —exp(—0Wyy1), and
asset returns are normally distributed. Exponential utility implies
that absolute risk aversion is a constant #, while relative risk aversion
increases in wealth.

3. Investors have power utility, U(Wyy1) = (I/thJ:l7 —1)/(1 —~), and
asset returns are lognormally distributed. Power utility implies that
absolute risk aversion is declining in wealth, while relative risk aversion
is a constant 7. The limit as y approaches one is log utility: U(W;y1) =

log(Wit1).

We have already argued that absolute risk aversion should decline, or
at the very least should not increase, with wealth. This rules out the
assumption of quadratic utility, and favors power utility over exponential
utility.  The power-utility property of constant relative risk aversion is
inherently attractive, and is required to explain the stability of financial
variables in the face of secular economic growth.

The choice between exponential and power utility also implies distribu-
tional assumptions on returns. Exponential utility produces simple results
if asset returns are normally distributed, while power utility produces simple
results if asset returns are lognormal (that is, if their logs are normal).

The assumption of normal returns is appealing for some purposes, but it
is inappropriate for the study of long-term portfolio choice because it cannot
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hold at more than one time horizon. If returns are normally distributed at
a monthly frequency, then two-month returns are not normal because they
are the product of two successive normal returns and sums of normals, not
products of normals, are themselves normal. The assumption of lognormal
returns, on the other hand, can hold at every time horizon since products
of lognormal random variables are themselves lognormal.

The assumption of lognormal returns runs into another difficulty, how-
ever. It does not carry over straightforwardly from individual assets to port-
folios. A portfolio is a linear combination of individual assets; if each asset
return is lognormal, the portfolio return is a weighted average of lognormals
which is not itself lognormal. This difficulty can be avoided by considering
short time intervals. As the time interval shrinks, the non-lognormality of
the portfolio return diminishes, and it disappears altogether in the limit of
continuous time. In this and the next few chapters we use a discrete-time
approximation to the relation between the log return on a portfolio and the
log returns on individual assets. The approximation becomes more accurate
as the time interval shrinks. In Chapter 5 we develop explicit models set
in continuous time.

2.1.3 A lognormal model with power utility

We now develop portfolio choice results under the assumption that investors
have power utility and that asset returns are lognormal. We repeatedly
apply a key result about the expectation of a lognormal random variable X:

1 1
log E; Xy 11 = By log X1 + §Vart log X141 = Egpyq + §a§t. (2.14)

Here and throughout the book, the notation log refers to the natural loga-
rithm, and lower-case letters are used to denote the logs of the corresponding
upper-case letters. Equation (2.14) can be understood intuitively by refer-
ence to Figure 2.1. The log is a concave function like the utility function
illustrated in Figure 2.1. Thus the mean of the log of a random variable X
is smaller than the log of the mean, and the difference is increasing in the
variability of X. The equation quantifies this difference for the special case
in which log X is normally distributed.

Under the assumption of power utility, equation (2.10) can be written as

max E; W, 7 /(1 — 7). (2.15)

Maximizing this expectation is equivalent to maximizing the log of the ex-
pectation, and the scale factor 1/(1 — 7) can be omitted since it does not
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affect the solution. Under the assumption that next-period wealth is log-
normal, we can apply equation (2.14) to rewrite as

wt*

- 1
max log Etth_HA’ = (1 —v)Eiwe1 + 5(1 —)%0? (2.16)
The budget constraint (2.11) can be rewritten in log form as

Wiyl = Tpt+1 + Wi, (2.17)

where 7p ;11 = log(1 4+ Rp++1) is the log return on the portfolio, the natural
logarithm of the gross simple return, also known as the continuously com-
pounded portfolio return. Dividing (2.16) by (1 — ~) and using (2.17), we
restate the problem as

1
max Erp 1 + 5(1 = V)T, (2.18)
where agt is the conditional variance of the log portfolio return.

To understand this equation, it is helpful to note that
Eyrp i1+ U;%t/Q =log Ex(1+ Rpt+1) (2.19)

because the portfolio return is lognormal. Thus (2.18) can be rewritten as

max log Ei(1 4+ Rp 1) — %fya?,t. (2.20)
Just as in the mean-variance analysis, the investor trades off mean against
variance in the portfolio return. The relevant mean return is the mean
simple return, or arithmetic mean return, and the investor trades the log of
this mean linearly against the variance of the log return. The coefficient of
relative risk aversion, v, plays the same role here as the parameter k played
in the mean-variance analysis.

Equation (2.18) shows that the case v = 1 plays a special role in the
analysis. When ~ = 1, the investor has log utility and chooses the portfolio
with the highest available log return (sometimes known as the “growth-
optimal” portfolio). When v > 1, the investor seeks a safer portfolio by
penalizing the variance of log returns; when ~ < 1, the investor actually
seeks a riskier portfolio because a higher variance, with the same mean log
return, corresponds to a higher mean simple return. The case v = 1 is
the boundary where these two opposing considerations exactly cancel one
another out. This case plays an important role throughout the book.
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Approximation of the portfolio return

To proceed further, we need to relate the log portfolio return to the log
returns on underlying assets. Consider first the simple case where there are
two assets, one risky and one riskless. Then from (2.1) the simple return
on the portfolio is a linear combination of the simple returns on the risky
and riskless assets. The log return on the portfolio is the log of this linear
combination, which is not the same as a linear combination of logs.

Over short time intervals, however, we can use a Taylor approximation
of the nonlinear function relating log individual-asset returns to log portfolio
returns. Full details are given in the Appendix; the resulting expression is

1
Tpt+1 — Tf,t—i—l = at(rt+1 — Tf,t+1) + 50&,5(1 — Oét)O'%. (2.21)

The difference between the log portfolio return and a linear combination
of log individual-asset returns is given by a;(1 — ay)0?/2. The difference
disappears if the portfolio weight in the risky asset is zero (for then the log
portfolio return is just the log riskless return), or if the weight in the risky
asset is one (for then the log portfolio return is just the log risky return).
When 0 < ay < 1, the portfolio is a weighted average of the individual assets
and the term a4 (1 — )07 /2 is positive. To understand this, recall that the
log of an average is greater than an average of logs as illustrated in Figure
2.1.

The approximation in (2.21) can be justified rigorously by considering
shorter and shorter time intervals. As the time interval shrinks, the higher-
order terms that are neglected in (2.21) become negligible relative to those
that are included. In the limit of continuous time with continuous paths
(diffusions) for asset prices, (2.21) is exact and can be derived using Ito’s
Lemma. We discuss the continuous-time approach in more detail in Chapter
5.

One important property of the approximate portfolio return is that it
rules out the possibility of bankruptcy, even when the investor holds a short
position (o < 0) or a leveraged position in the risky asset financed by bor-
rowing (oy > 1). The log portfolio return is always finite, no matter what
the returns on the underlying assets, and thus it is never possible to ex-
haust wealth completely. Continuous-time diffusion models also have this
property; in such models portfolios are rebalanced over such short inter-
vals that losses can always be stemmed by rebalancing before they lead to
bankruptcy. In most applications it is reasonable to exclude the possibil-
ity of bankruptcy, but this approach may not be suitable when it implies
optimal portfolios with extremely high leverage.
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The approximation (2.21) generalizes straightforwardly to the case where
there are many risky assets, jointly lognormally distributed with conditional
variance-covariance matrix of log returns ;. We write o2 for the vector
containing the diagonal elements of ¥, the variances of asset returns. (Re-
call our notational conventions that boldface lowercase letters denote vec-
tors, boldface lowercase sigma denotes a vector of covariances, and with a
slight abuse of notation o? denotes a vector of variances.) The approxima-
tion to the portfolio return becomes

Tpit1 — T4l = (T — rpepat) + iaga? — %aQZtat. (2.22)
This approximation holds in exactly the same form if we replace the riskless
return 741 with a risky benchmark return ro41, except that in this case
the vector o? and the matrix X; must contain variances and covariances of
excess returns on the other risky assets over the benchmark return, rather
than variances and covariances of total returns on these assets. (Excess and
total returns only have the same variances and covariances when they are
measured relative to a riskless return.)

Solution of the model

In a two-asset model, equation (2.21) implies that the mean excess port-
folio return is Esrp 41 — 7p141 = ae(Egrep1r — 7ppq1) + %at(l — ay)o?, while
the variance of the portfolio return is a?0?. Substituting into the objective

function (2.18), the problem becomes

1 1
max o (Egrip1 — 7f41) + Eat(l — at)af + 5(1 — y)a?af. (2.23)

The solution is
_ Berepn — g1 4 07/2
B ot '
This equation is the equivalent, in a lognormal model with power utility,
of the mean-variance solution (2.4). The top line is the expected excess
log return on the risky asset, with the addition of one-half the variance to
convert from log returns to simple returns that are ultimately of concern
to the investor. (The formula for the expectation of lognormal random
variables implies that E¢repq — 7441 + 07/2 = logEi(1 + Rig1) /(1 + Ryr).)
The bottom line is the coefficient of relative risk aversion times the variance
of the risky asset return. Thus, just as in a simple mean-variance model,

Qg (224)
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the optimal portfolio weight is the risk premium divided by risk aversion
times variance.

In a model with many risky assets, the solution for the vector of optimal
portfolio weights is

Qi = ;E;I(Etrtﬂ —rfit+ ?/2). (2.25)

This solution is the equivalent of the multiple-asset mean-variance solution
(2.8). Like the mean-variance solution, it has the property that the coeffi-
cient of relative risk aversion only affects the overall scale of the risky asset
position and not its composition. Thus a version of Tobin’s mutual fund
theorem holds in the lognormal model with power utility.

If there is no truly riskless asset, and we work instead with a risky
benchmark return rg 41, then the solution becomes

1 1
ap = ;Et_l(Etrt—&—l — g1t + 07/2) + (1 — ;) (-2 'ow),  (2.26)

where o is the vector of covariances of excess log returns with the bench-
mark log return. Just as in the simple mean-variance analysis (2.9), co-
variances with the benchmark affect the optimal portfolio weights. The
investor favors assets with positive covariances because, for given expected
log returns, they increase the expected simple return on the portfolio; but
the investor dislikes such assets because they increase the risk of the port-
folio. The two effects cancel when v = 1; in this case the solution takes
exactly the same form whether the benchmark asset is riskless or risky. As
v increases the optimal portfolio approaches the minimum-variance portfolio
—Et_lo'()t.

2.2 Myopic long-term portfolio choice

2.2.1 Power utility of wealth

So far we have assumed that the investor has a short investment horizon and
cares only about the distribution of wealth at the end of the next period.
Alternatively, we can assume that the investor cares about the distribution
of wealth K periods from now, so that the utility function is U (W;, k) rather
than U(W;41). We continue to assume that all wealth is reinvested, so the
budget constraint takes the form

Wivk = I+ Rpk i4x)We = (14+Rp 1) 1+ Ry 12) - (1+ Ry p k) Wy (2.27)
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Here the notation (1 + Ryx ++x) indicates that the portfolio return is mea-
sured over K periods, from ¢ to ¢t + K. This K-period return is just the
product of K successive 1-period returns. Note that this is a cumulative
return; to calculate an annualized return one would take the Kth root if the
base period is a year, the (K /4)th root if the base period is a quarter, and
in general the (K/S)th root if there are S base periods in a year. Taking
logs, the cumulative log return over K periods is just a sum of K 1-period
returns:

TpKi+K = Tpttl + - + TpttK- (2.28)

The annualized log return can be found by dividing by (K/S) if there are S
base periods in a year.

The long-term investor’s optimal portfolio depends not only on his ob-
jective, but also on what he is allowed to do each period. In particular, it
depends on whether the investor is allowed to rebalance his portfolio each
period, or must choose an allocation at time ¢ without any possibility of
asset sales or purchases between ¢ and the horizon ¢ + K.

Muyopic portfolio choice without rebalancing

We first assume that rebalancing is not possible between ¢ and t + K,
so that the long-term investor must evaluate K-period returns in the same
manner that the short-term investor evaluates single-period returns. We
continue to assume that utility takes the power form and that asset returns
are conditionally lognormally distributed. For simplicity we return to the
case where there is a single risky asset.

We now make a highly restrictive additional assumption, that all asset
returns are independent and identically distributed (IID) over time. This
implies that the log riskless rate is a constant r¢ and the log K-period riskless
return is Kr; the mean log return on the risky asset is a constant Er and
the mean log K-period return on the risky asset is KEr; the variance of the
log return on the risky asset is a constant o2 and the risky asset return is
serially uncorrelated, so the variance of the log K-period return on the risky
asset is just Ko?:

Varirg 1+ = Vargrey, + ... + Varrg g = Ko2. (2.29)

Here the first equality follows from the absence of serial correlation in risky
returns, and the second follows from the constant variance of the risky re-
turn.

With IID returns, then, the mapping from single-period log returns to K-
period log returns is straightforward. All means and variances for individual
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assets are scaled up by the same factor K. If we can apply the same
approximation (2.21) relating individual asset returns to the portfolio return,
this implies that the previous short-term portfolio solution is still optimal
for a long-term investor. Intuitively, the optimal portfolio weight on a
risky asset is the mean excess log return, plus one-half the log variance
to convert from mean log to mean simple return, divided by risk aversion
times variance. If both the mean and the variance are multiplied by K,
this solution does not change. The argument can readily be extended to
the case with multiple risky assets. Both the short-term investor and the
long-term investor perceive the same mean-variance diagram, merely scaled
up or down by a factor K; thus they choose the same point on the diagram,
that is, they choose the same portfolio.

The weakness in this analysis is the assumption that the approximate
budget constraint (2.21) applies to a long holding period.  Recall that
this budget constraint holds exactly in continuous time, and is an accurate
approximation over short discrete time intervals; but the quality of the ap-
proximation deteriorates if it is applied over long holding periods. For this
reason an exact solution to the long-term portfolio choice problem without
rebalancing does involve some horizon effects even if risky returns are 11D
(see for example Barberis (2000)). These effects are small but not negligible.

Muyopic portfolio choice with rebalancing

The assumption that a long-horizon investor cannot rebalance his port-
folio is superficially appealing because it makes the long-horizon problem
formally analogous to the short-horizon problem. Unfortunately it creates
a technical difficulty because it invalidates the use of the loglinear budget
constraint (2.21). More seriously, this assumption does not describe reality.
Investors with long horizons are free to trade assets at any time, and financial
intermediaries exist to rebalance portfolios on behalf of investors who find
this task costly to execute. (This is the purpose of so-called lifestyle mutual
funds.) There is no inherent connection between the investment horizon
and the frequency with which portfolios can be rebalanced. Accordingly
we now assume that the long-term investor can rebalance his portfolio every
period; and we continue to use this assumption throughout the rest of the
book.

Classic results of Samuelson (1969) and Merton (1969, 1971) give two sets
of conditions under which the long-term investor acts myopically, choosing
the same portfolio as a short-term investor. Portfolio choice will be myopic,
first, if the investor has power utility and returns are IID. This result was
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originally derived using dynamic programming, but here we give a simple
intuitive argument.

We start by noting that if returns are IID, no new information arrives
between one period and the next so there is no reason for portfolio choice to
change over time in a random fashion. We can therefore restrict attention
to deterministic portfolio rules in which the risky asset share a; may depend
on time. We also note that K-period returns are lognormal if single-period
returns are lognormal and IID. This means that the power-utility investor
chooses a portfolio on the basis of the mean and variance of the K-period
log portfolio return.

The K-period log return is just the sum of successive single-period log
returns. For simplicity, consider an example in which K = 2. Then we can
write

rp2it2 = 2rp = (rpat1 —7f) + (Ppay2 — 7y)
1
= at(rt+l 7T‘f)+§()ét(1*05t)0'2

1
Fas (reee —1p) + 5o (l - arp1)o’,  (2.30)

where we are allowing oy and ayy1 to be different because the investor can
freely rebalance his portfolio each period. The conditional variance of the
2-period log return is

Vary(rp,t+2) = (af + 0‘152+1)U2 (2.31)

since both a; and ay41 are deterministic and hence are known at time t.
The mean 2-period log return, adjusted by adding one-half the variance of
the 2-period return, is

1
Et(rp,t,t—&-Q) + §Vart(rp7t’t+2) = 27“f =+ (Oét + at+1)(Er — Ty =+ 0’2/2). (2.32)

The objective of a 2-period investor with power utility can be written as

1
max B¢ (rp ¢ ¢42) + §Vaft(7“ phi+2) — %Vart(r ptt+2)- (2.33)

Thus the investor with v > 0 always prefer a lower variance of log returns
for a given variance-adjusted mean. But from (2.32), the variance-adjusted
mean depends only on the sum (az+a441). The investor can fix this sum and
adjust the individual shares, oy and ay11, to minimize the variance. Since
variance depends on the sum of squares (a? + a% 1), this is accomplished by
setting oy = ay11, a constant portfolio rule.
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Once we know that the portfolio rule is constant, we also know that
it must be the same as the optimal rule for a short-term investor. The
reason is that in the last period before the horizon, the long-term investor
has become a short-term investor and will choose the optimal short-term
portfolio.

This argument for myopic portfolio choice straightforwardly extends to
any long horizon K. It can be related to a puzzle posed by Mark Kritzman
(2000) in his book Puzzles of Finance. In a chapter entitled “Half Stocks
All the Time or All Stocks Half the Time?”, Kritzman points out that these
two strategies have the same expected simple return, but the latter strategy
is riskier; thus a risk-averse investor should always prefer the former. This
is precisely the effect that underlies the argument for a constant portfolio
rule.

The second Samuelson-Merton condition for myopic portfolio choice is
that the investor has log utility. In this case portfolio choice will be myopic
even if asset returns are not IID. The argument here is particularly simple.
Recall that the log utility investor chooses a portfolio that maximizes the
expected log return. Equation (2.28) shows that the K-period log return
is just the sum of 1-period log returns. Since the portfolio can be chosen
freely each period, the sum is maximized by maximizing each of its elements
separately, that is, by choosing each period the portfolio that is optimal for
a 1-period log utility investor.

2.2.2 Fallacies of long-term portfolio choice

Although the conditions for myopic portfolio choice are simple, and their
logic can be understood without resort to advanced mathematics, there has
been much confusion about these issues over the years. One source of
confusion is the common tendency to measure risk in units of standard
deviation rather than variance, and to work with mean-standard deviation
diagrams (like Figure 1.1) rather than mean-variance diagrams. With IID
returns the variance of a cumulative risky return is proportional to the
investment horizon K, but the standard deviation is proportional to the
square root of K. (If returns are annualized, the variance is constant but
the standard deviation shrinks in proportion to the square root of K.) Thus
the Sharpe ratio of any risky investment, its mean excess return divided by
its standard deviation, grows with the square root of K.

It is tempting to calculate long-horizon Sharpe ratios, observe that they
are large, and conclude that lengthening the investment horizon somehow
reduces risk in a manner analogous to the effect of diversifying a portfolio
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across uncorrelated risky assets. But this “time diversification” argument
is a fallacy. Sharpe ratios cannot be compared across different investment
horizons; they must always be measured over a common time interval.

A related fallacy is to argue that there is a single best long-term portfolio
for all investors, regardless of their preferences. The proposed portfolio
is the “growth-optimal” portfolio that maximizes the expected log return.
As the investment horizon increases, this portfolio outperforms any other
portfolio with higher and higher probability. In the limit, the probability
that it outperforms goes to one. To understand this property of the growth-
optimal portfolio, note that the difference between the cumulative growth-
optimal log return and the log return on any other portfolio is a normally
distributed random variable. Write the mean of this difference as p(K) and
the standard deviation as o(K). The mean u(K) is positive because the
growth-optimal log return has the highest mean of any available portfolio
strategy. The probability that the difference is positive is ®(—u(K)/o(K)),
where ®(-) denotes the cumulative distribution function of the standard
normal distribution. As the investment horizon K increases, the ratio
(K)o (K) grows with VK, so ®(—u(K)/o(K)) goes to one.

The fallacy is the claim that this property of the growth-optimal portfolio
makes it the best portfolio for all long-term investors. It is, of course, the
best portfolio for an investor with log utility; but investors with higher risk
aversion should hold more conservative portfolios. Even though the growth-
optimal portfolio will almost always outperform such conservative portfolios
over long horizons, the loss when it does underperform is larger at long
horizons, and this possibility is heavily weighted by conservative investors.
This point was forcefully made by Samuelson (1979) in an article entitled
“Why We Should Not Make Mean Log of Wealth Big Though Years to Act
Are Long”. The last paragraph of the article reads as follows: “No need to
say more. I've made my point. And, save for the last word, have done so
in prose of but one syllable.” (p.306). A more recent popular discussion of
the fallacy, which is easier to read because it allows itself a wider selection
of words, is in Kritzman (2000, Chapter 3).

2.2.3 Power utility of consumption

The assumption that investors care only about wealth at a single horizon
is analytically convenient but empirically troublesome. Most investors,
whether they are individuals saving for retirement or institutions such as
universities that live off endowment income, are concerned not with the
level of wealth for its own sake, but with the standard of living that their
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wealth can support. In other words they consume out of wealth and derive
utility from consumption rather than wealth.

In this section we assume that utility is defined over a stream of con-
sumption. Once we make this assumption, the horizon plays a much smaller
role in the analysis; it still defines a terminal date, but conditions at each
intermediate date are also important. If the terminal date is distant, inter-
mediate conditions dominate the solution, which will not depend sensitively
on the exact choice of terminal date. In fact, we can let the terminal date
go to infinity and work with an attractively simple infinite-horizon model.
We can vary the effective investment horizon by varying the time discount
factor that determines the relative weights investors place on the near-term
future versus the distant future. This is our mode of analysis for most of
the rest of the book.

We first assume that investors have time-separable power utility, defined
over consumption:

Sl ©  cl=v_q
maxEy Y 6'U(Cipi) = By Za@%. (2.34)
=0 =0

Here ¢ is the time discount factor. When ¢ is large, investors place relatively
high weight on the distant future. As ¢ shrinks, they place more and more
weight on the near future; in the limit as 6 approaches zero, they behave like
single-period investors. Investors face the intertemporal budget constraint
that wealth next period equals the portfolio return times reinvested wealth,
that is, wealth today less what is subtracted for consumption:

Wip1 = (14 Rp1) (Wi — Cy). (2.35)

This objective function and budget constraint imply the following first-
order condition or Euler equation for optimal consumption choice:

U/(Ct) =E; [§UI(0t+1)(l + Ri,t—i—l)L (2.36)

where (1 + R;¢41) denotes any available return, for example the riskless
return (1 + Ry¢y1), the risky return (1 + Ryyq), or the portfolio return
(1+ Rp¢11). Equation (2.36) says that at the optimum, the marginal cost
of saving an extra dollar for one period must equal the marginal benefit.
The marginal cost is the marginal utility of a dollar of consumption, U’(C}).
The marginal benefit is the expectation of the payoff if the dollar is invested
in an available asset for one period, (1 + R;+41), times the marginal utility
of an extra dollar of consumption next period, U’'(Ct41), discounted back to
the present at rate 9.
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We can divide (2.36) through by U’(C}) and use the power utility con-
dition that U'(C;) = C; 7 to rewrite as

C —y
) ( t+1) (14 Rity1)

1=, -

(2.37)

In the case where the return is riskless, R; ;11 = Ryf41, it is known at time
t and thus can be brought outside the expectations operator; we have

Crr1\
o < C, > ] . (2.38)

The term 6(Cyy1/Cy) ™" that appears in all these expressions is known as
the “stochastic discount factor” or SDF because it can be used to discount
expected payoffs on any assets to find their prices. The consumption of any
investor who is able to freely trade in the financial markets can be used as an
SDF. The field of asset pricing asks how the properties of the SDF explain
the properties of asset returns, and how the SDF is determined by the gen-
eral equilibrium of the economy; in this book we take a partial-equilibrium
perspective and seek to explain the properties of optimal consumption and
portfolio choice given asset returns. Campbell (2000) and Cochrane (2000)
survey the SDF methodology.

1
(1+ Rﬁt)

= E;

A lognormal consumption-based model

The natural way to proceed, given our earlier discussion, is to assume
that asset returns and consumption are jointly lognormal, and to work with
loglinear versions of these equations. Hansen and Singleton (1983) pioneered
this approach. The log form of the riskless-rate Euler equation (2.38) can

be written as logd 1
og Y
+ ;rf,t+1 =+ 5 O'zt. (239)

Et[ACt+1] =

The three terms on the right-hand side of (2.39) correspond to three forces
acting on consumption. First, a patient investor with a high time dis-
count factor ¢ is inherently willing to postpone consumption. Second, a
high interest rate gives an investor an incentive to postpone consumption.
Postponing consumption means raising consumption in the future relative
to consumption today, tilting the consumption path upwards; however di-
minishing marginal utility of consumption limits the investor’s willingness to
tolerate any deviation from a flat consumption path. The investor’s willing-
ness to tilt consumption in response to incentives is known as the elasticity
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of intertemporal substitution in consumption (EIS). In a model with power
utility, the EIS equals the reciprocal of risk aversion, 1/y. Thus with a high
~ the investor is extremely unwilling to tilt consumption and the planned
consumption growth rate will change only slightly with the time discount
factor and the riskless interest rate. The third term on the right-hand side
of (2.39) represents the effect of uncertainty. A risk-averse investor will
respond to uncertainty by increasing precautionary saving, again tilting the
consumption path upwards.

It is also possible to write expected consumption growth in terms of the
expected portfolio return. The first term on the right-hand side of (2.39) is
unchanged by doing this, the second term becomes (1/7)E;rp 41, and the
third term involves the variances and covariances of the portfolio return and
consumption growth. This alternative representation is more convenient
for some purposes, and will be used in our analysis of Epstein-Zin utility in
the next section.

The Euler equation for power utility can also be used to describe the
risk premium on a single risky asset over the riskless interest rate. The log
form of the general Euler equation (2.37), less v times (2.39), is

2
g
Eirig — rfe+1 + 7t = 'YCOVt(Tt—H,ACt-&-l)- (2.40)

This says that in equilibrium, the expected excess return on the risky asset
must equal risk aversion 7 times the covariance of the asset return with
consumption growth. A similar equation describes each risky asset’s risk
premium in a model with multiple risky assets. In asset pricing theory,
this equation is used to explain assets’ risk premia and is known as the
consumption capital asset pricing model or CCAPM; here we take the risky
asset return as given and seek a consumption rule and portfolio strategy
that will make (2.40) hold.

A constant consumption-wealth ratio

A difficulty with the lognormal consumption-based model is that the
intertemporal budget constraint (2.35) is not generally loglinear, because
consumption is subtracted from wealth before multiplying by the portfolio
return. The combination of subtraction and multiplication creates an in-
tractable nonlinearity.

In later chapters of this book, following Campbell (1993), we will ap-
proach this problem by approximating the budget constraint. For now,
however, we assume that the consumption-wealth ratio is constant, in which
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case the budget constraint becomes loglinear. We solve the model under this
assumption, and then seek to find conditions that justify the assumption.
A constant consumption-wealth ratio can be written as

Ct

— =D 2.41

o, 241
and the budget constraint (2.35) can then be written in log form as

Awt+1 = Tpt+1 + log(]. — b)
= 7rrep1 Fou(reer — )

1
+§o¢t(1 — ay)o? 4 log(1 — b), (2.42)

where the second equality substitutes in from (2.21).

The constant consumption-wealth ratio (2.41) also implies that the growth
rate of consumption equals the growth rate of wealth, so the terms in con-
sumption in (2.39) and (2.40) can be rewritten in terms of wealth. The
formula for a single risky asset’s expected excess return, (2.40), becomes

Etrei1 — a1 + 02/2 = yCovi (i1, Awi 1) = Yooy, (2.43)

where the second equality follows from (2.42). Solving this equation for ay,
we once again obtain the myopic solution (2.24):

B — g4 07/2
o}

Qi

It is straightforward to show that the myopic solution for multiple risky
assets, (2.26), is equally valid for a long-term investor with a constant
consumption-wealth ratio.

In a model with power utility, then, the assumption that the consumption-
wealth ratio is constant immediately leads to the conclusion that portfolio
choice is myopic. Under what conditions can this assumption be justified?
The answer to this question is by now familiar. First, if returns are IID,
there are no changes over time in investment opportunities that might in-
duce changes in consumption relative to wealth. The scale-independence of
the power utility function implies that consumption is a constant fraction
of wealth in this case. Second, if risk aversion v = 1, consumption is again
a constant fraction of wealth. The intuition for this result is that changing
investment opportunities have opposing effects on consumption relative to
wealth. An improved investment opportunity, say a higher riskless interest
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rate, raises the amount that can be consumed each period without deplet-
ing wealth. This income effect tends to increase consumption relative to
wealth. On the other hand, an improved investment opportunity creates
an incentive to postpone consumption to the future. This substitution ef-
fect tends to decrease consumption relative to wealth. In the power-utility
model, the log-utility case v = 1 is the case where income and substitution
effects exactly cancel out, so that the consumption-wealth ratio is always
constant regardless of any fluctuations in investment opportunities.

To prove these statements, one can use the budget constraint (2.42) to
find the conditional mean and variance of wealth, and substitute into (2.39).
The resulting equation can be solved for a constant b if asset returns are 11D
or if v = 1. Intuitively, (2.39) says that expected consumption growth
should move 1/~ for one with the expected return. This is consistent with
a constant consumption-wealth ratio if the expected return is constant, or if
expected consumption growth adjusts one for one with the expected return
so that the desired changes in consumption growth can be financed just
by the variation in the expected return itself, without any need for savings
adjustments.

2.2.4 Epstein-Zin utility

Despite the many attractive features of the power-utility model, it does have
one highly restrictive feature. Power utility implies that the consumer’s
elasticity of intertemporal substitution, 1, is the reciprocal of the coefficient
of relative risk aversion, . Yet it is not clear that these two concepts should
be linked so tightly. Risk aversion describes the consumer’s reluctance to
substitute consumption across states of the world and is meaningful even
in an atemporal setting, whereas the elasticity of intertemporal substitution
describes the consumer’s willingness to substitute consumption over time
and is meaningful even in a deterministic setting. Epstein and Zin (1989,
1991) and Weil (1989) use the theoretical framework of Kreps and Porteus
(1978) to develop a more flexible version of the basic power utility model. The
Epstein-Zin model retains the desirable scale-independence of power utility
but breaks the link between the parameters v and .
The Epstein-Zin objective function is defined recursively by

_0
1—y

1y 1\
U, = {(1 — 8§07 +6 <Et Ut+3) } , (2.44)

where 0 = (1 —~)/(1 —1/v¢). When v = 1/¢, § = 1 and the recursion
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(2.44) becomes linear; it can then be solved forward to yield the familiar
time-separable power utility model.

The Epstein-Zin model can be understood by reference to Figure 2.2.
The horizontal axis shows the elasticity of intertemporal substitution, ),
while the vertical axis shows the coefficient of relative risk aversion, «v. The
set of points with unit elasticity of intertemporal substitution is drawn as a
vertical line, while the set of points with unit relative risk aversion is drawn
as a horizontal line. The set of points with power utility is drawn as the
hyperbola v = 1/1. Log utility is the point where all three lines cross; it
has y =19 = 1.

The nonlinear recursion (2.44) does not look at all easy to work with.
Fortunately Epstein and Zin have shown, using dynamic programming ar-
guments, that if the intertemporal budget constraint takes the form (2.35)
(that is, if the investor finances consumption entirely from financial wealth
and does not receive labor income), then there is an Euler equation of the
form

T I R e R ]

where as before (1 4+ R;:41) is the gross return on any available asset, in-
cluding the riskless asset and the portfolio itself.

Equation (2.45) simplifies somewhat if we set (1+R;¢11) = (1+ Rpt+1)-
If the portfolio return and consumption are jointly lognormal, we then find
that expected consumption growth equals

0
E; [ACH-I] =Ylogéd + ¢Etrp,t+1 + ﬁVart [Act—l-l — ¢7‘p,t+1}- (246)

Expected consumption growth is determined by time preference, the ex-
pected portfolio return, and the effects of uncertainty summarized in the
variance term. Note that the elasticity of intertemporal substitution v, and
not the coefficient of relative risk aversion 7, determines the response of ex-
pected consumption growth to variations in the expected return. Random-
ness in future consumption growth, relative to portfolio returns, increases
precautionary savings and lowers current consumption if § > 0 (a condi-
tion satisfied by power utility for which § = 1), but reduces precautionary
savings and increases current consumption if 6 < 0.

When there is a single risky asset, the premium on the risky asset over
the safe asset is

o? Covy(ria1. Ac
Errior —rpeent— =0 il “;;v t“)+(1—0)covt(rt+1,rp,t+l). (2.47)
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Figure 2.2: Epstein-Zin utility
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The expected excess return on the risky asset is a weighted average of the
risky asset’s covariance with consumption growth (divided by the elasticity
of intertemporal substitution 1) and asset i’s covariance with the portfolio
return. The weights are 6 and 1 — 0 respectively.

A similar equation holds for each risky asset in a model with multiple
risky assets and no short-term riskless asset. In vector notation, we have

o? 0
Et(rtH — T07t+1b) -+ 7t = EUCt + (]. — G)O'pt — O, (248)

where as before rp 41 is the total return on the risky benchmark asset, o-?
is the vector of excess-return variances, oo is the vector of excess-return
covariances with consumption growth, o, is the vector of excess-return
covariances with the total return on the portfolio, and o is the vector of
excess-return covariances with the total return on the benchmark asset. In
an asset pricing context, this equation explains any asset’s risk premium by
reference to both its consumption covariance (the consumption CAPM) and
its covariance with the investor’s overall portfolio (the traditional CAPM).
In the power utility case, # = 1 and we have a pure consumption CAPM.

The familiar conditions for myopic portfolio choice follow immediately
from (2.47). If asset returns are IID, then consumption is a constant fraction
of wealth and covariance with consumption growth equals covariance with
portfolio return. In this case the right-hand side of (2.47) can be rewritten
as (0 /¢ + 1 — 0)Covi(riy1,mpt+1) = YCoVi(res1,mp+1), which implies the
myopic portfolio rule. If relative risk aversion v = 1, then § = 0 and the
right-hand side of (2.47) is just Covy(re41,7pt+1), which again implies the
myopic portfolio rule. This derivation makes it clear that what is required
for myopic portfolio choice is unit relative risk aversion, not a unit elasticity
of intertemporal substitution. Log utility is the special case where both
relative risk aversion and the elasticity of intertemporal substitution (EIS)
equal one.

The case of a unit EIS requires careful handling in this model. As
approaches one, 0 approaches positive or negative infinity. Equation (2.46)
can only be satisfied if Var¢[Aci11 — 7p¢41] = 0, which implies a constant
consumption-wealth ratio. To analyze portfolio choice in this case, one
must take appropriate limits of the terms on the right-hand side of (2.47).
Giovannini and Weil (1989) have done this analysis and have shown that
the model with 1) = 1 does not have myopic portfolio choice unless v = 1 (in
which case we have log utility). The constancy of the consumption-wealth
ratio in the unit EIS model makes this a particularly tractable specification.
(This is also true in a continuous-time setting, as shown by Schroder and
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Skiadas 1999). In the succeeding chapters we will use the unit-EIS case as
a benchmark case in which we can get exact solutions, and around which
we can construct approximate solutions.

Finally, Epstein and Zin have also shown that the maximized utility
function or value function per unit wealth, V; = U; /W4, is related to con-
sumption per unit wealth Cy/W} by the expression

Vi= (1-6) T3 (&>_¢ - (2.49)

t

Two special cases are worth noting. First, as ¢ approaches one, the expo-
nents in (2.49) increase without limit. The value function has a finite limit,
however, because the ratio Cy/W} approaches (1 — §) as shown by Giovan-
nini and Weil (1989). Second, as v approaches zero, V; approaches Cy/W.
A consumer who is extremely reluctant to substitute intertemporally con-
sumes the annuity value of wealth each period, and this consumer’s utility
per dollar is the annuity value of the dollar.

2.3 Conclusion

Does the investment horizon affect portfolio choice? In this chapter we
have shown that it may not. We have assumed that investors’ relative risk
aversion does not depend systematically on their wealth, an assumption that
is required to explain the stability of interest rates and asset returns through
two centuries of economic growth. Under this assumption the investment
horizon is irrelevant for investors who have only financial wealth and who
face constant investment opportunities. Even if investment opportunities
are time-varying, the investment horizon is still irrelevant for investors whose
relative risk aversion equals one. Such investors should behave myopically,
choosing the portfolio that has the best short-term characteristics. Popular
arguments to the contrary, such as the claim that long-term investors can
afford to take greater risk because they have “time to ride out the ups and
downs of the market”, are simply wrong under these conditions.

Legitimate arguments for horizon effects on portfolio choice depend on
violations of the conditions for myopic portfolio choice discussed in this
chapter. In our view there is strong empirical evidence that these conditions
fail in various ways. The rest of the book is devoted to an exploration of
portfolio choice in the presence of such failures.
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Chapter 3

Who Should Buy Long-Term
Bonds?

In Chapter 2 we explored in detail the conditions for myopic portfolio choice.
We now begin to develop a theory of long-term portfolio choice when these
conditions fail. To keep things as simple as possible, we assume initially
that all the random variables that are relevant for investors are lognormally
distributed with constant variances and covariances. This assumption is
not innocuous in the context of portfolio choice theory, because it requires
both that the investor’s portfolio return has a constant variance, and that
the returns on individual assets have constant variances and a constant
covariance with the portfolio. These conditions are consistent with one
another only if the composition of the portfolio is constant, which in turn is
optimal—given constant variances—only if the expected excess returns on all
assets are constant. Asset returns can change over time, but they must move
in parallel with the riskless interest rate. In other words, our initial model
allows only a limited form of time-variation in investment opportunities,
driven by movements in the short-term interest rate. In the next chapter
we generalize the model to allow movements in risk premia as well.
Throughout this and the next chapter we consider investors who have
only financial wealth and no labor income, deferring a consideration of labor
income to Chapter 6. We assume that investors care not about wealth for its
own sake, but about the consumption stream that can be financed by wealth.
To keep the analysis simple we assume that the investor is infinitely lived;
we can vary the effective investment horizon by varying the investor’s rate of
time preference and thus varying the relative importance of the near future
and the distant future. We assume that the investor has the Epstein-Zin
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preferences developed in section 2.2.4, with constant relative risk aversion -y
and a constant elasticity of intertemporal substitution ¢ that need not be
related to one another.

The key problem in solving an intertemporal model of this sort is that the
investor’s intertemporal budget constraint is nonlinear. In section 3.1.1 we
approach this problem by taking a loglinear approximation of the budget
constraint, as first proposed by Campbell (1993). The approximation is
exact if the consumption-wealth ratio is constant (as it will be if ¢ = 1),
and it is accurate if the consumption-wealth ratio is not too variable (as
it will be if ¥ is not too far from one). In section 3.1.2 we show how the
approximate budget constraint can be used to substitute consumption out of
the Euler equations of the Epstein-Zin model, giving an expression relating
assets’ risk premia to their covariances with current portfolio returns and
revisions in expected future portfolio returns.

Section 3.1.3 applies these methods to the portfolio problem, deriving an
explicit expression for the portfolio weight on a single risky asset. When the
investor has risk aversion greater than one, the demand for the risky asset
is affected not only by the asset’s risk premium in relation to its variance,
but also by its covariance with revisions in expected future interest rates.
An asset whose value increases when interest rates fall is a desirable hedge
against declines in interest rates that would otherwise reduce the income
thrown off by the portfolio. This is the intertemporal hedging effect first
emphasized by Merton (1973). Section 3.1.4 develops this idea further.
Long-term bond prices move inversely with interest rates, so they are good
intertemporal hedges. As the investor’s risk aversion increases, the optimal
portfolio approaches an inflation-indexed perpetuity that pays one unit of
real consumption forever. In an important sense this asset is the riskless
asset for a long-term investor; even though it may have an unstable capital
value in the short term, it finances a riskless consumption stream over the
long term. Section 3.1.5 generalizes the analysis to the case where there are
multiple risky assets and there may be no short-term riskless asset. This
also allows us to find the optimal portfolio even when the investor faces
borrowing and short-sales constraints.

In section 3.2 we develop a more specific model and fit it to historical
interest-rate data from the United States (and the United Kingdom, to be
added later). We specify the model in section 3.2.1, present US estimates
in section 3.2.2, and derive the implied optimal portfolios in section 3.2.3.
Section 3.3 concludes.
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3.1 Long-Term Portfolio Choice in a Model with
Constant Variances and Risk Premia

3.1.1 Approximation of the intertemporal budget constraint

Recall that the intertemporal budget constraint, in a model with consump-
tion at every date, is

Wig1 = (1+ Rpp1)(Wi — Cy). (3.1)

A central problem in the theory of intertemporal portfolio choice is that
this budget constraint is nonlinear because consumption is subtracted from
wealth before the portfolio return multiplies the remainder. In other words,
only reinvested wealth earns the portfolio return and not all wealth is rein-
vested.

In the last chapter we concentrated on models in which the consumption-
wealth ratio is constant. In this case reinvested wealth (W; — C}) is a
constant fraction of total wealth, and (3.1) can be rewritten in loglinear
form.

We now develop an alternative approach to the problem of nonlinearity.
Following Campbell (1993), we approximate the budget constraint around
the mean of the consumption-wealth ratio. We first divide (3.1) by W; to

get
Wit

=(14+R 1——=). 3.2

it = (L Rpes)( = ) (32
Taking logs, this becomes

Awpyr = rpt1 + log(1 — exp(cr — wy)). (3.3)

The second term on the right-hand side of (3.3) is a nonlinear function
of the log consumption-wealth ratio. If that ratio is not too variable, this
can be well approximated using a first-order Taylor expansion around its
mean. Details are given in the Appendix; the resulting expression is

1
Awgpr =k +rpie1 + (1 - ;) (et —wy), (3.4)

where k and p are parameters of linearization. The parameter p is defined
by p = 1 —exp(c—w). When the consumption-wealth ratio is constant,
then p can be interpreted as (W — C)/W, the ratio of reinvested wealth
to total wealth. The parameter k is given by the messy expression k =

log(p) + (1 — p)log(1 — p)/p.
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It is helpful to derive a long-term version of this budget constraint. To
do this we can use the trivial equality

Awt+1 = Acty1 + (Ct — wt) — (Ct_|_1 — wt+1). (3.5)

Equating the left-hand sides of (3.4) and (3.5), we obtain a difference equa-
tion in the log consumption-wealth ratio. We can solve forward, assuming
that lim;_,o p/ (ct+j — witj) = 0 (a condition that will hold, for example,
if the consumption-wealth ratio is stationary), to get

Ct — Wt = ZM(T‘I,J_F]‘ — ACH_]') + ]C—p (36)

j=1
This equation says that a high consumption-wealth ratio today must be
followed either by high returns on invested wealth or by low consumption
growth. That is, high consumption today will deplete wealth and hence
future consumption possibilities unless it is offset by high investment returns.
This follows simply from the intertemporal budget constraint; there is no
model of optimal behavior in (3.6).
Equation (3.6) holds ex post, but it also holds ex ante; if one takes
expectations of (3.6) at time ¢, the left-hand side is unchanged, and the
right-hand side becomes an expected discounted value:

e —wy =By Y prpppy — Acry) + . (3.7)

i=1 L=»

Equation (3.7) can be substituted into (3.4) and (3.5) to obtain

ciy1 — Eicppr = (B — Ey) ijrp,t+1+j
=0
~(Bey1 —E0) > p/ Acriry. (3.8)
=0

Equation (3.8) says that an upward surprise in consumption today must
correspond to an unexpected return on wealth today (the first term in the
first sum on the right-hand side of the equation), or to news that future
returns will be higher (the remaining terms in the first sum), or to a down-
ward revision in expected future consumption growth (the second sum on
the right-hand side).
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These formulas are analogous to expressions developed by Campbell and
Shiller (1988) and Campbell (1991) relating dividends, stock prices, and
stock returns. Wealth can be thought of as an asset that pays consumption
as its dividend. This insight applies both to an individual’s wealth and con-
sumption, and to aggregate wealth and consumption; thus the assumption
commonly made in empirical finance research, that an aggregate stock index
is a good proxy for the market portfolio of aggregate wealth, is equivalent to
the assumption of Lucas (1978) and Mehra and Prescott (1985) that stocks
are priced as if they pay dividends equal to the aggregate consumption of
the economy.

3.1.2 Substituting out consumption

We have shown that the consumption-wealth ratio can be related to expected
future returns and consumption growth. The next step is to substitute
expected consumption growth out of the model. For this purpose we can
use the Euler equation for Epstein-Zin utility under lognormality, (2.46):

0
Et[Acti1] = ¢ logé + YEirp 1 + ﬁvart [Acti1 — Prp 1]
If consumption and the portfolio return are not only lognormal but ho-
moskedastic, then the variance term in (2.46) is constant and we can rewrite
as

EiAcii1] = p+ vErp 41, (3.9)

where the intercept p includes not only the pure rate of time preference but
also the effects of risk on consumption.
Substituting (3.9) into (3.7), we find

oo

Ct — Wy = (1 — ¢)Et ijrp,tﬂ + M (310)
=1 R

The log consumption-wealth ratio depends on the expected discounted value
of all future portfolio returns, with positive sign if » < 1 and negative
sign if ¢ > 1. There are opposing income and substitution effects of an
increased portfolio return. On the one hand, if the portfolio return is higher,
consumption can be higher in all periods for any value of wealth; this is the
positive income effect of the portfolio return on consumption. On the
other hand, if the portfolio return is higher, there is a greater incentive
to delay consumption, cutting consumption today in order to exploit more
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favorable investment opportunities; this is the negative substitution effect of

the portfolio return on consumption. The income effect dominates if ¢ < 1

and the substitution effect dominates if v > 1. If b = 1, the two effects

cancel and the consumption-wealth ratio is constant as previously noted.
Equation (3.10) allows us to rewrite (3.8) as

oo
cri1 = Brcrrr = rpir1 — EBerpapr + (1= ) (Brir —B) Y prperasy. (3.11)
=0

The innovation in consumption is the surprise component of the portfolio
return, which has a one-for-one effect because of the scale-independence of
the utility function, plus (1 — ¢) times the revision in expectations of fu-
ture returns. If b < 1, a positive surprise about future returns increases
consumption today through the dominant income effect; if ¢» > 1, a posi-
tive surprise about future returns reduces consumption today through the
dominant substitution effect.

Earlier we assumed that consumption and asset returns are jointly log-
normal and homoskedastic. =~ We can now see what is required to justify
this assumption. According to (3.11), we need that log portfolio returns
and revisions in expectations of future log portfolio returns are normal and
homoskedastic, as they will be for example in a linear time-series model for
log returns and other state variables.

Recall that under Epstein-Zin utility with a single risky asset, the pre-
mium on the risky asset over the safe asset is given by (2.47):

2
(o COVt(Tt—i-l,Act—s—l)
Eirip1 —rpp41 +— =10

2 G

Although we are assuming that conditional variances and covariances are
constant over time, we retain their time subscripts to make it clear that they
are calculated conditional on time ¢ information. Equation (3.11) implies
that the covariance with consumption that appears in this expression can
be replaced by the covariance with the portfolio return, plus (1 — 1) times
the covariance with revised expectations about future returns. Using the
relation between the parameters 6, v, and v, we find that

+ (1 — Q)COVt(TH_LTp’H_l).

2
ag
Erevr — g1 + é = YCovi(re+1,rpt+1) (3.12)
e .
+(y = DCovi(risr, By —Eo) > pIrpiray)-
=0
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Campbell (1993) derived this equation, and Campbell (1996) used it in an
asset pricing context, asking whether the CAPM, as extended by the second
term on the right-hand side of (3.12), could explain the pattern of risk premia
in US financial markets.

This analysis shows that under Epstein-Zin utility, there is an elegant
separation between the elasticity of intertemporal substitution  and the
coefficient of relative risk aversion . Given the loglinearization coefficient
p, only the parameter 1) appears in equations (3.10) and (3.11) that relates
consumption to returns, and only the parameter v appears in the equation
(3.12) that relates the risk premium to the second moments of asset returns.
A caveat is that in general the loglinearization parameter p itself depends
on both v and ~; however we shall see that this dependence is empirically
weak and does not seriously undermine the separation of ¢ and ~.

3.1.3 Application to portfolio choice

So far we have assumed only that consumption and the optimal portfolio
are jointly lognormal with constant variances. In order to apply (3.12) in a
model of portfolio choice, we need to make the further assumption that the
available individual assets have constant variances and risk premia. This
implies that variation in the expected portfolio return is entirely due to vari-
ation in the riskless interest rate, so the revisions in expected future portfolio
returns in (3.12) are equivalent to revisions in expected future riskless in-
terest rates: (Eup1—E) > 720 P rper1+j = (Be1—Ee) D000 o/ rpevry It
also implies that optimal portfolio weights are constant, reconciling the as-
sumptions of constant variances for both individual assets and the portfolio
return.

In a model with a single risky asset, we have Covi(rt1,7pt4+1) = uos.
Substituting into (3.12) and rearranging, we find that the optimal portfolio
weight on the risky asset is a constant « given by

1Eirip —rpe + 07 /2

a = x
Y Ot
1\ Covi¢(riz1, —(Eig1 — E X 0P T i1
+(1_;) t(reg1, — (Bey UQt)Z] 0P Trt+ +y)‘ (3.13)
¢

The demand for the risky asset is a weighted average of two desirable at-
tributes. The first attribute is the asset’s risk premium, relative to its
variance, and the second, intertemporal attribute is the asset’s covariance
with reductions in expected future interest rates, again relative to its vari-
ance. The weight on the first attribute is relative risk tolerance (1/7),
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which becomes negligible as « increases; a highly conservative investor does
not buy the risky asset for its risk premium. The weight on the second
attribute is 1 — (1/7), which is zero for a myopic investor with v = 1 but
approaches 1 as 7y increases. A highly conservative investor holds the risky
asset only if it covaries with declines in interest rates, compensating the
portfolio for the reduction in income that occurs when interest rates fall.

A variant of (3.13) was derived by Restoy (1992). Using (3.10), Restoy
noted that revisions in expected future portfolio returns are proportional to
surprises in the log consumption-wealth ratio, (E;11—E;) Z;’;O P rpttitj =
(Et+1—E¢)(ct41 — wir1)/(1 — 1), Hence we can write

1By — g + 07 /2

o = 3
Y (o
1 1\ Cove(rei1, —(ctr1 — wiy1))
1—— . 14
i < 7) (1 —¢> o} (319

This equation shows that the intertemporal component of asset demand
works through covariance of the risky asset with the consumption-wealth
ratio. However it can be misleading because it suggests that the parameter
1 plays a role in asset demand whereas in fact 1 cancels out of the previous
equation.

A third transformation of (3.13) uses the Epstein-Zin result (2.49) re-
lating the value function per unit wealth to the consumption-wealth ratio.
Taking logs of (2.49), the second term in (3.14) can be restated in terms of
the covariance of the risky asset return with the value function,

1B —rpea +07/2

(8% =
Y o7
1\ C —
n (1 _ _) OVt(Tt+12, Ut+1)' (3.15)
Y (o

This shows that the intertemporal component of asset demand is determined
by the covariance of the risky asset return with the investor’s utility per unit
wealth, which varies over time with investment opportunities.

One can use these three equations to understand the intellectual history
of research on long-term portfolio choice. Merton (1971, 1973) introduced
the concept of intertemporal hedging demand for risky assets. He worked
with the indirect utility or value function defined over wealth and state vari-
ables; thus his approach was similar in spirit to (3.15). Breeden (1979)
first used covariance with consumption as a measure of risk for a long-term
investor; thus his approach was close to (3.14). Neither author derived
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an explicit solution comparable to (3.13), relating portfolio demands to co-
variances of assets with exogenous variables. Equation (3.13) depends on
specific assumptions, but it can be used to obtain general insights. Note
in particular that intertemporal hedging demand in (3.13) depends on the
discounted present value of all future interest rates; thus portfolio choice of
long-term investors is affected far more strongly by persistent variations in
investment opportunities than by transitory variations.

3.1.4 What is the riskless asset?

The identity of the riskless asset is a fundamental issue in finance. It is
conventional to think of the riskless asset as an asset that has a stable capital
value in the short term, such as a Treasury bill or money market fund. Such
an asset has a known return over one period, and will be held by an infinitely
conservative short-term investor.

For a long-term investor, however, a strategy of rolling over Treasury
bills is not necessarily safe because maturing bills must be reinvested at
unknown future real interest rates. Over thirty years ago Modigliani and
Sutch (1966) made is point particularly clearly, writing

Suppose a person has an n period habitat; that is, he has
funds which he will not need for n periods and which, therefore,
he intends to keep invested in bonds for n periods. If he invests
in n period bonds, he will know exactly the outcome of his in-
vestments as measured by the terminal value of his wealth.... If,
however, he stays short, his outcome is uncertain.... Thus, if he
has risk aversion, he will prefer to stay long (pp. 183-184).

Modigliani and Sutch’s assumption, that an investor cares about only
about wealth at a single future date, is somewhat artificial. However a
similar point applies to a long-term investor of the sort modelled in this
book, who cares about the stream of consumption or standard of living that
can be supported by wealth.

To show this, we consider what happens to portfolio choice as the coef-
ficient of relative risk aversion increases. In this case relative risk tolerance
(1/v) goes to zero so (3.13) approaches

Covi(riet, —(Brr — o) 2020 P77 a4145)

5 .
0%

(3.16)

o =

Now consider the pricing of an inflation-indexed perpetuity or consol,
that pays one unit of consumption each period forever. Campbell, Lo and
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MacKinlay (1997, p. 408), following Shiller (1979), show that a log-linear
approximation to the log yield y.: on a real consol is

o0
Yer = e+ (L= po)Be Y plhrpasasy. (3.17)
=0

Here ., is a constant that captures any risk premium on the consol, and p,
is a log-linearization parameter defined as p, = 1 —exp{E(—pc+)}, where p.+
is the log “cum-dividend” price of the consol including its current coupon.’
Also, the consol return is given by

1
T

_ Pe
Tet+1 = t — 1—p Ye,t+1
C

)
= T+l + e — (Et-‘rl - Et) ZPZTf,t+1+j. (3.18)
7=0

Thus the consol return has the property that its variance o? equals the
negative of its covariance with revisions in expected future interest rates.
If a consol is the risky asset, & = 1 in (3.16), implying that an infinitely
risk-averse investor puts all his wealth in an inflation-indexed consol. In
this sense the consol, and not the short-term safe asset, is the riskless asset
for a long-term investor.

The above argument assumes that p = p,. These two constants are
indeed the same for an individual who is infinitely reluctant to substitute
consumption intertemporally () = 0). Such an individual consumes the
annuity value of wealth, the consumption stream that can be sustained
indefinitely by the initial level of wealth. But the annuity value of a real
perpetuity is just its dividend of one. Thus for this investor C/W = 1/P,,
which implies E[c — w] = E[—pc|, and thus, from the definitions of the log-
linearization parameters, p = p,. The infinitely risk-averse investor who is
infinitely reluctant to substitute intertemporally holds a real perpetuity that
finances a riskless consumption stream over the infinite future.

LCampbell, Lo, and MacKinlay work with expected future returns on the perpetuity,
but in the current model with constant risk premia these equal the riskless interest rate
plus a constant. Also, Campbell, Lo, and MacKinlay give an alternative definition of p,
in relation to the “ex-dividend” price of the consol excluding its current coupon. This is
more natural in a bond pricing context, but less convenient here because the form of the
budget constraint implies that we are measuring wealth inclusive of current consumption,
that is, on a “cum-dividend” basis.
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3.1.5 Generalizing the solution

The above analysis generalizes straightforwardly to the case where there are
multiple risky assets, with or without a short-term riskless asset. As in the
previous chapter, we write the variance-covariance matrix of excess risky
asset returns as 3; and the vector of excess-return variances, the main diag-
onal of X, as 0'%. We also define a vector o, that contains the covariances
of each risky asset return with declines in expected future interest rates:

oo
one = Covi(rerr, —(Berr —Bo) Y p/rpasay): (3.19)
=0

The use of the letter h here is intended to evoke Merton’s concept of in-
tertemporal hedging demand.
If a short-term riskless asset exists, we have

1 1 _
o = ;2t 1(Etlf‘t+1 —Tfi+1t T+ 03/2) + (1 - ;) % Lot (3.20)

Just as before, the vector of risky asset allocations is a weighted average of
a myopic term and a hedging term, where the weights are determined by
relative risk tolerance. As risk aversion increases, risk tolerance declines
and all weight shifts to the hedging term. If there is no short-term riskless
asset, then the solution is augmented by an intercept, just as in the myopic
case (2.26). The intercept can be combined with the intertemporal hedging
term to write

1 1 _
o = ;Zt 1(Etlf‘t+1 — Tt + 0'?/2) + (1 - ;> > 1(Uht —ow), (3.21)

where o is the vector of covariances of each risky asset’s excess return over
the benchmark with the benchmark return itself. In practice, as we have
noted earlier, the adjustment for benchmark covariances tends to be small
when a short-term asset is used as the benchmark.

It is tempting to relate these solutions to the inflation-indexed consol
introduced in the previous section. If the loglinearization parameter p is
fixed and equal to p., then the vector o is equal to a vector o contain-
ing covariances of each risky asset return with the inflation-indexed consol
return. In this case we can give a regression interpretation to the hedging
term in (3.20). X; o is the vector of population regression coefficients
from a multiple regression of an inflation-indexed consol return onto the set
of risky asset returns. If an inflation-indexed consol is in the set of avail-
able risky assets, then this vector will place zero weight on all risky assets
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except the inflation-indexed consol itself. If an inflation-indexed consol is
not available, then the optimal hedging portfolio will be that combination
of the risky assets that best approximates the return on an inflation-indexed
consol in a regression sense.

The problem with this discussion is that the loglinearization parameter
p depends on preferences, and will not exactly equal p,. unless the investor
is infinitely risk-averse and infinitely unwilling to substitute consumption
intertemporally (1/y = 1 = 0). For all other preferences, p # p. and
thus o # o, although the differences are small empirically. In the case
where 1 = 1, we know that p = §, the time discount factor. If ¢ # 1,
we must solve for p numerically. We do this using a recursive procedure.
We take an initial value of p, solve (3.21) for the optimal portfolio, solve
for the corresponding optimal consumption-wealth ratio using (3.10), use
this consumption-wealth ratio to calculate a new value for p, and repeat
until convergence. In practice these calculations are extremely rapid and
straightforward.

We can also allow for borrowing and short-sales constraints. Uncon-
strained portfolio allocations are often highly leveraged; but this permits
the possibility of bankruptcy in a discrete-time model, and many investors
are constrained in their use of leverage. Because the unconstrained optimal
portfolio policy is constant over time, we can impose constraints using re-
sults in Tepla (1999). Following Cvitani¢ and Karatzas (1993), Tepla (1999)
shows that standard results in static portfolio choice with borrowing and
short-sales constraints extend to intertemporal models whose unconstrained
optimal portfolio policies are constant over time. The optimal portfolio allo-
cations under borrowing constraints are the unconstrained allocations with
a higher short-term interest rate, and the optimal portfolio allocations un-
der short-sales constraints are found by reducing the dimensionality of the
asset space until the optimal unconstrained allocations imply no short sales.
These and all other results given in this section are explained in detail in
the Appendix.

3.2 A Model of the Term Structure of Interest
Rates

3.2.1 Specification of the model

Our analysis of portfolio choice with constant risk premia gives a special
role to long-term bonds. The riskless asset for a long-term investor is an
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inflation-indexed consol. If this asset is available it will play some role in the
optimal portfolio of any investor who has relative risk aversion greater than
one. If an inflation-indexed consol is not available, a conservative investor
will hold assets that are good proxies for it.

In order to go further, we need to use an explicit model of the term
structure of interest rates to derive quantitative predictions for investors’
holdings of Treasury bills, long-term bonds, and equities. Following Camp-
bell and Viceira (2001), we now present such a model. The model is set in
discrete time; it has two factors, one real and one nominal, with lognormal
distributions and constant variances. This is the simplest term structure
model that allows us to distinguish between real and nominal bonds. The
real part of the model is a discrete-time version of the well-known Vasicek
(1977) continuous-time model.

Because bonds have deterministic payoffs, they can be priced by writing
down a time-series model for the stochastic discount factor (SDF) My ;.
The SDF determines the prices of all assets in the economy, but the link is
particularly direct with bonds since we do not have to model their payoffs.
In a representative-agent framework the SDF can be related to the marginal
utility of a representative investor, but here we simply use it as a device to
generate a complete set of bond prices. A more detailed explanation of this
type of model is given by Campbell, Lo, and MacKinlay (1997, Chapter 11)
and Campbell (2000).

We first take logs and work with my1 = log(My11). We break this into
its conditional expectation at time ¢, x¢, and a shock realized at time ¢ + 1,
Um,t+1°

—Mi41 = Tt + Umt+1- (3.22)

We assume that z; follows an AR(1) process:

Tep1 = (1 — @) pty + Gpt + €11 (3.23)

We allow the innovations to the log SDF to be correlated with innovations
to its conditional expectation:

Umt+1 = BmgCat+1 + Emt+1- (3.24)

The term structure of real interest rates

The economic meaning of these assumptions can best be appreciated
by working out their implications for the term structure of real interest
rates. There is a direct link between the stochastic discount factor and
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the log return, or equivalently the log yield, on a one-period indexed bond:
41 = —log E¢[My 1] = E¢[—mie 1] —%Vart [my41] since My is lognormal.
Substituting in from (3.22)—(3.24), we have

1
Tt+1 = Tt — 5 ( ma:a-a% + 0-7271) ’ (325)

where 02 = Var(ez 1) and 02, = Vari(emst+1). The short-term real

interest rate equals the state variable z; adjusted by a constant, so it follows
an AR(1) process with persistence ¢.

Longer-term inflation-indexed bonds can be priced recursively. A two-
period bond today will become a one-period bond tomorrow, when its price
will be described by (3.25). Thus one can solve for its log price, or equiva-
lently its log yield, and then the log prices and yields of all longer-maturity
bonds. The solution for the log yield on an n-period indexed zero-coupon
bond, ¥y, times bond maturity n, which equals minus the log price of the
bond, pnt, is given by

NYnt = —Pnt = An + Bpay, (3.26)

where A,, and B,, are functions of bond maturity n but not of time t.
A recursive expression for the coefficient A, is given in the Appendix.
More important for our present discussion, the coefficient B,, is given by

1—¢¢
1-9,
To understand this equation, note that the expectations hypothesis of the
term structure holds in this model. Thus the log bond yield is a constant
plus an average of expected future real interest rates over the next n periods,
and n times the log bond yield is a constant plus a sum of expected future
real interest rates. Since the real interest rate follows an AR(1) process with
persistence coefficient ¢,,, the expected real interest rate k£ periods ahead is
a constant plus gb]; times the real interest rate today. Summing up over n
periods gives (3.27).

The one-period log return on an n-period indexed zero-coupon bond is
just the change in its price, (pp—1,++1—pPn,t). Combining this expression with
(3.26) and (3.27), the excess return over the one-period log interest rate is

Bn=1+¢,Bn_1= (3.27)

1
_ 2 2 2
bl 9 n_ - —_ y .
Tnt+1 — T1t+1 §B 10 /Bm;an 10, By_1eq t+1, (3 28)

so the n-period bond is sensitive only to real-interest-rate shocks ez 11,
with a sensitivity B,—1. Because the real part of our model has only a
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single factor, yields and prices of inflation-indexed bonds of all maturities
are driven only by the short-term real interest rate and thus are perfectly
correlated with one another. The variance of the n-period bond return is
02, = B2_,02, and the risk premium is

2

o
Et [Tngr1 — r1e41] + Tnt = —BypBn_102. (3.29)

The risk premium on the long-term bond, or term premium, is determined
by the conditional covariance of the excess bond return with the log SDF. In
our homoskedastic model the conditional covariance is constant through time
but dependent on the bond maturity; thus the term premium is constant
as postulated by the expectations hypothesis of the term structure. Since
Bj,—1 > 0, the term premium has the opposite sign to 3,,,. With a positive
Bz, long-term indexed bonds pay off when the SDF or, equivalently, the
marginal utility of consumption for a representative investor is high, that is,
when wealth is most desirable. In equilibrium, these bonds have a negative
term premium and the real yield curve is on average downward-sloping.
With a negative (3,,,, on the other hand, long-term indexed bonds pay off
when the marginal utility of consumption for a representative investor is
low, and so in equilibrium they have a positive term premium. In this case
the real yield curve is on average upward-sloping.

Equation (3.29) implies that the Sharpe ratio for indexed bonds is —3,,,,0 4,
which is independent of bond maturity. The invariance of the Sharpe ratio
to bond maturity follows from the single-factor structure of the real sector
of the model. The ratio of the risk premium to the variance of the excess
return, which determines a myopic investor’s allocation to long-term bonds,
is —(,,2/Bn—1. This does depend on bond maturity but not on the volatility
of the real interest rate.

The optimal portfolio of inflation-indexed bonds

If only inflation-indexed bonds are available to the investor, the real
sector of the model is all we need to derive an explicit solution to the port-
folio problem. Because all long-term inflation-indexed bonds are perfectly
correlated, we can consider without loss of generality the choice between
two assets: a single-period inflation-indexed bond and an n-period inflation-
indexed bond. Using (3.28) to calculate the terms in (3.13), we find that
the optimal portfolio weight on the n-period bond is

() () () o
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This solution has several interesting properties. First, the variance of
real interest rate shocks, o2, does not directly affect the portfolio weight a,
because, given the parameterization of our model, it moves the variance of
returns and the risk premium in proportion to one another. Interest-rate
variance can only affect the solution indirectly, through the loglineariza-
tion parameter p. Empirically we find that p changes very little when
the parameters of the model change, and so the indirect effect through p is
quantitatively negligible.

Second, the interest-rate sensitivity of the optimal portfolio is given by
apBp_1, and this does not depend on the bond maturity n. Two as-
sets are enough to complete the market with respect to real-interest-rate
risk, and thus the investor can use any two inflation-indexed bonds to con-
struct a portfolio with the optimal level of interest-rate sensitivity. If only
short-maturity bonds with a low sensitivity are available, the investor can
compensate by holding more of them or even leveraging his position; if only
long-maturity bonds with a high sensitivity are available, the investor can
compensate by holding fewer of them.

Third, the intertemporal hedging demand, the second term in (3.30), is
increasing in the persistence of interest-rate shocks ¢,. This is because, as
shown in the general solution (3.13), hedging demand is determined by the
covariance of the risky asset return with the discounted value of all future
interest rates. A major theme of the empirical work in this book is that
persistent shocks to investment opportunities are much more important for
portfolio choice than are transitory shocks to investment opportunities.

Fourth, as risk aversion increases and the elasticity of intertemporal sub-
stitution declines, the limit of (3.30) is a portfolio that is equivalent to
an inflation-indexed consol. In this model an inflation-indexed consol has
interest-rate sensitivity —p./(1 — p.¢,), and p = p, when 1/y = 1 = 0.
This is a special case of the general point made in section 3.1.4.

Equation (3.30) is appealingly simple, but it lacks realism because it
does not allow investors to hold nominal bonds or equities. In order to go
further, we need to augment the model to include such assets.

The term structure of nominal interest rates

In order to price nominal bonds, we must model the process driving infla-
tion. We assume that this process has the same form that we have already
assumed for the SDF. That is, realized log inflation 711 equals expected
log inflation z; plus an inflation shock, and expected inflation follows an
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AR(1) process:

Ter1 = 2¢+ Urgtd, (3.31)
ziv1 = (1= ;) py + b2t + vzpra (3.32)

We assume that the shocks to realized and expected inflation, vr ;41 and
Uz ¢+1, can be correlated with each other and with the real shocks to the
model:

Uzt+l = ﬁzx€x7t+1 + 5zm6m7t+1 T Ezt41, (333)
vﬂ',t-‘rl - /Bﬂng,t“rl + /Bﬂ'mgm7t+1 + 57rz€Z,t+1 + €7T,t+1, (334)

The model is driven by four normally distributed, white noise shocks
Em,t+1; Emi+l, Ext+1, and ;441 that determine the innovations to the log
SDF, the log inflation rate, and their conditional means. These shocks are
cross-sectionally uncorrelated, with variances o2,, 02, 02, and o2. It is
important to note that z;y1, the expected inflation rate, is affected by both
a pure expected-inflation shock €, ;41 and the shocks to the expected and
unexpected log SDF e,;41 and &,,¢4+1. That is, innovations to expected
inflation can be correlated with innovations in the log SDF, and hence with
innovations in the short-term real interest rate. These correlations mean that
nominal interest rates need not move one-for-one with expected inflation—
that is, the Fisher hypothesis need not hold—and nominal bond prices can
include an inflation risk premium as well as a real term premium.

We have written the model with a self-contained real sector (3.22)—(3.24)
and a nominal sector (3.31)—(3.34) that is affected by shocks to the real
sector. But this is merely a matter of notational convenience. Our model is
a reduced form rather than a structural model, so it captures correlations
among shocks to real and nominal interest rates but does not have anything
to say about the true underlying sources of these shocks.

The pricing of nominal bonds follows the same steps as the pricing of
indexed bonds. The log price of an n-period nominal zero-coupon bond, pi’t,
is a linear combination of x; and z; whose coefficients are time-invariant,
though they vary with the maturity of the bond:

—pb, =AY + BY o+ B, (3.35)

The Appendix gives expressions for the coefficients Ai, Bfn and Bg’n.
Since nominal bond prices are driven by shocks to both real interest

rates and inflation, they have a two-factor structure rather than the single-

factor structure of indexed bond prices. Inflation affects the excess return
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on an n-period nominal bond over the one-period nominal interest rate, so
risk premia in the nominal term structure include compensation for inflation
risk. Like all other risk premia in the model, however, the risk premia on
nominal bonds are constant over time; thus the expectations hypothesis of
the term structure holds for nominal as well as for real bonds.

Pricing equities

Even though our focus in this chapter is on long-term bonds, a full
evaluation of bond demand requires that we include equities in our model
as an attractive alternative long-term investment. We do this as simply as
possible, assuming that the unexpected log return on equities is affected by
shocks to both the expected and unexpected log SDF:

Tett1 — Et Tet+1 = Beg€ait+1 + BemEm,t+1- (3.36)

Campbell (1999) shows that this decomposition of the unexpected log equity
return into a linear combination of the shocks to the expected and unex-
pected log SDF is consistent with a representative-agent endowment model
where expected aggregate consumption growth follows an AR(1). From the
fundamental pricing equation 1 = E;[M;y1Ri+1] and the lognormal struc-
ture of the model it is easy to show that the risk premium on equities, over
a one-period riskless return r1 441, is given by

2

g
Bt [Te,t+1 - Tl,tJrl] + Td = ﬂmxﬂewai + ﬂemagn' (337)

Like all other covariances in the model, this is constant over time so the
equity premium is a constant.

Once nominal bonds and equities are included in the model, the algebraic
portfolio solutions become sufficiently complicated that it is no longer helpful
to write them out explicitly. Instead, we estimate the model on historical
data and present numerical solutions.

3.2.2 The term structure of interest rates in the US

Data and estimation method
We estimate the two-factor term structure model using data on US nom-
inal interest rates, equities and inflation. We use nominal zero-coupon yields

at maturities 3 months, 1 year, 3 years, and 10 years from McCulloch and
Kwon (1993), updated by Gong and Remolona (1996a,b). We take data on

53



CHAPTER 3. WHO SHOULD BUY LONG-TERM BONDS?

equities from the Indices files on the CRSP tapes, using the value-weighted
return, including dividends, on the NYSE, AMEX and NASDAQ markets.
For inflation, we use a Consumer Price Index that retrospectively incorpo-
rates the rental-equivalence methodology, thereby avoiding any direct effect
of nominal interest rates on measured inflation. The Appendix shows that
estimation results are extremely similar if we instead use the personal con-
sumption expenditure (PCE) deflator to measure inflation. Although the
raw data are available monthly, we construct a quarterly data set in order
to reduce the influence of high-frequency noise in inflation and short-term
movements in interest rates. We begin our sample in 1952, just after the
Fed-Treasury Accord that dramatically altered the time-series behavior of
nominal interest rates. Our data end in 1996.

To avoid the implication of the model that bond returns are driven by
only two common factors, so that all bond returns can be perfectly explained
by any two bond returns, we assume that bond yields are measured with
error. The errors in yields are normally distributed, serially uncorrelated,
and uncorrelated across bonds. Then the term structure model becomes a
classic state-space model in which unobserved state variables x; and z; follow
a linear process with normal innovations and we observe linear combinations
of them with normal errors. The model can be estimated by maximum
likelihood using a Kalman filter to construct the likelihood function.

In Table 3.1 we report parameter estimates for the period 1952-96 and
the period 1983-96. Interest rates were unusually high and volatile in the
1979-82 period, during which the Federal Reserve Board under Paul Volcker
was attempting to reestablish the credibility of anti-inflationary monetary
policy and was experimenting with monetarist operating procedures. Many
authors have argued that real interest rates and inflation have behaved dif-
ferently in the monetary policy regime established since 1982 by Federal
Reserve chairmen Volcker and Alan Greenspan (see for example Clarida,
Gali and Gertler 1998). Accordingly we report separate estimates for the
period starting in 1983 in addition to the full sample period.

The parameter values in Table 3.1 are restricted maximum likelihood
estimates of the model. Unrestricted maximum likelihood estimates fit the
data well in the 1952-96 sample period, but they deliver implausibly low
means for short-term nominal and real interest rates in the 1983-96 sample
period. (The model does not necessarily fit the sample means because the
same parameters are used to fit both time-series and cross-sectional behav-
ior; thus the model can trade off better fit elsewhere for worse fit of mean
short-term interest rates.) Accordingly we require that the model exactly
fit the sample means of nominal interest rates and inflation. This restriction
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Table 3.1: Term Structure Model Estimation

1952.1 - 1996.111 1983.1 - 1996.111

Parameter est. s.e. est. s.e.
e 0.0573 0.0298 0.0194 0.0693
sy 0.0094 0.0087
o 0.8688 0.0057 0.9862 0.0042
o, 0.9992 0.0012 0.8599 0.0216

Bz -74.9797  41.6949 -28.6919 114.0025
B 0.0752 0.0516 -0.4114 0.1886
Bam -0.0012 0.0006 0.0008 0.0024
Bz 0.5198 0.3050 -0.0267 0.9790
Bom -0.0088 0.0034 0.0008 0.0193
B 1.4320 0.2940 -1.5412 1.5047
Bex -3.4957 3.4123  -9.3629 6.3014
Bem 0.3013 0.0979 0.5089 1.3528
Oy 0.0025 0.0001 0.0027 0.0006
Om 0.2694 0.0927 0.1351 0.3579
o 0.0013 0.0001 0.0016 0.0002
o 0.0071 0.0004 0.0072 0.0018
log-lik. 26.3327 26.8222
no. obs. 179 55
E[r17t+1] 1.39% 2.93%
E[rf, 1] 5.50% 6.40%
0(T17t+1) 1.01% 3.25%
o(rf, 1) 6.70% 3.09%
E[TrtH] 3.77% 3.49%
Ut(7rt+1) 157% 152%
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hardly reduces the likelihood at all in 1952-96, and even in 1983-96 it cannot
be rejected at conventional significance levels.

Parameter estimates

The first two columns of Table 3.1 report parameters and asymptotic
standard errors for the period 1952-96. All parameters are in natural units,
so they are on a quarterly basis. We estimate a moderately persistent process
for the real interest rate; the persistence coefficient ¢, is 0.87, implying a
half-life for shocks to real interest rates of about 5 quarters. The expected
inflation process is much more persistent, with a coefficient ¢, of 0.9992
that implies a half-life for expected inflation shocks of over two centuries!
Of course, the model also allows for transitory noise in realized inflation.

The bottom of Table 3.1 reports the implications of the estimated pa-
rameters for the means and standard deviations of real interest rates, nomi-
nal interest rates, and inflation, measured in percent per year. The implied
mean log yield on an indexed three-month bill is 1.39 percent for the 1952-96
sample period. Taken together with the mean log yield on a nominal three-
month bill of 5.50 percent and the mean log inflation rate of 3.77 percent
(both restricted to equal the sample means over this period), and adjusting
for Jensen’s Inequality using one-half the conditional variance of log infla-
tion, the implied inflation risk premium in a three-month nominal Treasury
bill is 35 basis points. This fairly substantial risk premium is explained by
the significant positive coefficient (3,.,, and the significant negative coefficient
Bm in Table 3.1.7

Risk premia on long-term indexed bonds, relative to a three-month in-
dexed bill, are determined by the parameter f3,,,. This is negative and
significant, implying positive risk premia on long-term indexed bonds and
an upward sloping term structure of real interest rates. Risk premia on nom-
inal bonds, relative to indexed bonds, are determined by the inflation-risk
parameters 3,, and (3,,,. The former is positive but statistically insignifi-
cant, while the latter is negative and significant. Both point estimates imply
positive inflation risk premia on nominal bonds relative to indexed bonds.

The parameters in Table 3.1 can also be used to calculate the volatil-
ity of the log stochastic discount factor. From (3.22)—(3.24), the variance
of myyq is 02 /(1 — ¢2) + B2,,02 + 02,. The estimates in Table 3.1 imply
a large quarterly standard deviation of 0.33, consistent with the literature
on volatility bounds for the stochastic discount factor (Hansen and Jagan-
nathan 1991, Cochrane and Hansen 1992). When financial markets are
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complete, the discounted marginal utility growth of each investor must be
equal to the stochastic discount factor. Therefore the consumption and
portfolio solutions we report later in the paper for the complete-markets
case imply highly volatile marginal utilities, due either to volatile consump-
tion or high risk aversion. This is a manifestation of the equity premium
puzzle of Mehra and Prescott (1985) in our microeconomic model with ex-
ogenous asset returns and endogenous consumption.

Implications for the term structure

Table 3.2 explores the term-structure implications of our estimates in
greater detail. The table compares implied and sample moments of term
structure variables, measured in percent per year. It also reports standard
errors for the implied moments, calculated using the delta method. Panel
A of Table 3.2 reports sample moments for returns and yields on nominal
bonds, together with the moments implied by our estimated model; panel B
shows comparable implied moments for indexed bonds, and panel C reports
sample and implied moments for equities. Row 1 of the table gives Jensen’s-
Inequality-corrected average excess returns on n-period nominal bonds over
1-period nominal bonds, while row 2 gives the standard deviations of these
excess returns. Row 3 reports annualized Sharpe ratios for nominal bonds,
the ratio of row 1 to row 2. Row 4 reports mean nominal yield spreads
and row 5 reports the standard deviations of nominal yield spreads. Rows 6
through 10 repeat these moments for indexed bonds. Note that the reported
risk premia and Sharpe ratios for nominal and indexed bonds are not di-
rectly comparable because they are measured relative to different short-term
assets, nominal and indexed respectively.

A comparison of the model implications in rows 1 and 6 shows that 10-
year nominal bonds have a risk premium over three-month nominal bills of
1.97 percent per year, while 10-year indexed bonds have a risk premium
over three-month indexed bills of 1.35 percent per year. These numbers,
together with the 35-basis-point risk premium on three-month nominal bills
over three-month indexed bills, imply a 10-year inflation risk premium (the
risk premium on 10-year nominal bonds over 10-year indexed bonds) slightly
above 1.1 percent. This estimate is consistent with the rough calculations
in Campbell and Shiller (1996).

Rows 2 and 7 show that nominal bonds are much more volatile than
indexed bonds; the difference in volatility increases with maturity, so that 10-
year nominal bonds have a standard deviation three times greater than 10-
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Table 3.2: Sample and Implied Moments of the Term Structure

Moment

1952.1 - 1996.111

1983.1 - 1996.111

(=}

A~~~ N /N /N
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O — — — —

A: Nominal Term Structure
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SR = (1)/(2)
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J(yi,t—kl - y%,t—l—l)

B: Real Term Structure
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sample
implied
sample
implied
sample
implied
sample
implied
sample
implied

implied
implied
implied
implied
implied

C: Equities

sample
implied
sample
implied
sample
implied

1 yr. 10 yr. 1 yr. 10 yr.
0.397 0.915 0.706 5.675
0.559 1.967 0.155 2.278
1.615 11.365 1.135 12.612
1.634 11.566 1.312 14.896
0.246 0.080 0.622 0.450
0.342 0.170 0.118 0.153
0.440 1.185 0.527 2.067
0.294 1.174 0.071 0.766
0.222 0.613 0.177 0.545
0.182 0.826 0.140 0.803
0.490 1.345 0.245 2.513
1.309 3.788 1.590 16.295
0.374 0.374 0.154 0.154
0.253 1.100 0.118 0.858
0.182 0.816 0.067 0.738
6.910 8.738

8.988 4.527

15.917 14.646

15.896 14.748

0.434 0.597

0.565 0.307
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year indexed bonds. This difference in volatility makes the Sharpe ratio for
indexed bonds in row 8 considerably higher than the Sharpe ratio for nominal
bonds in row 3. Since indexed bond returns are generated by a single-factor
model, the Sharpe ratio for indexed bonds is independent of maturity at
0.37. The Sharpe ratio for nominal bonds declines with maturity; short-
term nominal bonds have a ratio close to that for indexed bonds, but the
Sharpe ratio for 10-year nominal bonds is only 0.17. These numbers imply
that in our portfolio analysis, investors with low risk aversion will have a
strong myopic demand for indexed bonds.

Table 3.2 can also be used to evaluate the empirical fit of the model. A
comparison of the model’s implied moments with the sample moments for
nominal bonds shows that the model fits the volatility of excess nominal
bond returns and changes in yields extremely well. The model somewhat
overstates the average excess nominal bond return and the nominal Sharpe
ratio, but this can be attributed in part to the upward drift in interest rates
over the 1952-96 sample period which biases downward the sample means.
The standard errors for implied volatilities are small, while the standard
errors of implied mean excess returns are large. This reflects the well-known
result that it is much harder to obtain precise estimates of first moments
than of second moments.

Another way to judge the fit of the model is to ask how much of the
variability of bond yields, or bond returns, is accounted for by the struc-
tural parameters as opposed to the white-noise measurement errors we have
allowed in each bond yield. The estimated variances of measurement errors
(not reported in Table 3.1) are zero for 1-year and 10-year bonds and are
extremely small for 3-month bills and 3-year bonds. Measurement errors are
estimated to account for less than 0.5 percent of the variance of 3-month
and 3-year bond yields and less than 5 percent of the variance of 3-year
bond returns. This reflects the fact that bond yields are highly persistent
at all maturities, so the model fits them primarily with persistent structural
processes rather than white-noise measurement errors.

Finally, we can use the model to describe the history of the nominal US
term structure and its components. We do this in Figure 3.1, which shows
3-month nominal bill yields, real yields and expected inflation in the top
panel, and the equivalent 10-year series in the bottom panel. The model
attributes the low-frequency variation of nominal interest rates, particularly
the runup in nominal rates from the 1960’s through the early 1980’s and
the slow decline thereafter, to changing expected inflation. Much of the
higher-frequency variation in interest rates is attributed to the real interest
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rate, particularly after the end of the 1960’s.? Because real-interest-rate
variation is less persistent than expected-inflation variation, the latter is
the main determinant of the 10-year nominal yield. However the 10-year
real yield does show some residual variation. Overall the model appears
to provide a good description of the nominal US term structure considering
its parsimony and the fact that we have forced it to fit both time-series and
cross-sectional features of the data.

Rows 11, 12, and 13 of Table 3.2 report summary statistics for equities:
the annualized Jensen’s-Inequality-corrected average excess returns on equi-
ties relative to nominal bills, the standard deviation of these excess returns,
and their Sharpe ratio. The model fits the standard deviation of equities
extremely well but overpredicts the equity premium and the Sharpe ratio
for equities. The implied Sharpe ratio of 0.57 implies that investors with
low risk aversion will have an extremely large myopic demand for equities;
this is again a manifestation of the equity premium puzzle.

The right hand sides of Tables 1 and 2 repeat these estimates for the
Volcker-Greenspan period 1983-96. Many of the parameter estimates are
quite similar; however we find that in this period real interest rates are much
more persistent, with ¢, = 0.986 and an implied half-life for real interest
rate shocks of about 12 years. The expected inflation process now mean-
reverts much more rapidly, with ¢, = 0.860 implying a half-life for expected
inflation shocks of about 5 quarters. These results are consistent with the
patterns illustrated in Figure 3.1, and with the notion that since the early
1980’s the Federal Reserve has more aggressively controlled inflation at the
cost of greater long-term variation in the real interest rate (Clarida, Gali,
and Gertler 1998). The increase in real-interest-rate persistence increases
the risk premia on indexed and nominal bonds, but it also greatly increases
the volatility of indexed bond returns so the Sharpe ratio for indexed bonds
is lower at 0.15. In the remainder of the chapter we present portfolio choice
results based on our full-sample estimates for the period 1952-96, but we also
discuss results for the 1983-96 period where they are importantly different.

*Fama (1975) famously argued that the real interest rate is constant and that all vari-
ation in nominal interest rates is due to expected inflation. This was a reasonable view
of his data, which ended in 1971, but certainly does not describe more recent experience.
Perhaps Fama fell foul of “Murphy’s Law of Empirical Economics”, that any strong char-
acteristic of historical data will alter immediately after it has been identified by empirical
economists!
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Figure 3.1: Fitted real and nominal yields and inflation
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Table 3.3: Optimal Allocations to Equities and Long-Term Bonds

Unconstrained Constrained Unconstrained Constrained

R.R.A. Equity Indexed Equity Indexed Equity Nominal FEquity = Nominal

(A) Sample Period: 1952 - 1996

0.75 443 1082 100 0 470 25 100 0
332 835 100 0 352 21 100 0

166 464 100 0 175 15 100 0

66 242 60 40 69 12 69 12

10 33 168 30 70 33 11 33 11
5000 0 94 0 94 -2 10 0 10

(B) Sample Period: 1983 - 1996

0.75 262 -1 100 0 259 1 100 0
196 21 94 6 195 24 96 4

98 o4 53 47 99 o8 52 48

39 74 28 72 41 78 25 75

10 20 81 19 81 22 85 16 84
5000 0 88 0 88 3 92 3 92

3.2.3 Implications for portfolio choice

Given our estimates of the term structure model, it is straightforward to
calculate all the terms in the intertemporal portfolio solution (3.21). Ta-
ble 3.3 reports optimal demands for equities and for 3-month and 10-year
indexed or nominal bonds by investors who are unconstrained or subject to
borrowing and short-sales constraints. For simplicity we assume either that
short- and long-term bonds are all indexed, or that they are all nominal; we
do not allow investors to hold equities, indexed bonds, and nominal bonds
simultaneously. Panel A reports results for the 1952-96 sample, which we
consider first.
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In a world with full indexation, the unconstrained demand for both long-
term indexed bonds and equities is positive and often above 100 percent,
implying that the investor optimally borrows to finance purchases of equities
and indexed bonds. The portfolio share of indexed bonds exceeds that of
equities, despite the higher Sharpe ratio of equities, because indexed bonds
are much less risky than equities.® As the coefficient of relative risk aversion
increases, the demands for both long-term indexed bonds and equities fall,
but the share of equities falls faster. In the limit the infinitely risk-averse
investor holds a portfolio equivalent to an indexed perpetuity as we have
already discussed. When there are borrowing and short-sale constraints,
investors with low risk aversion invest fully in equities as a way to maximize
their risk and expected return without using leverage, while more risk-averse
investors hold both indexed bonds and equities. Cash plays only a minor
role and only in the portfolios of the most risk-averse investors, who are
almost fully invested in indexed bonds.

These findings are related to the “asset allocation puzzle” of Canner,
Mankiw, and Weil (1997) discussed in Chapter 1. Investment advisers of-
ten suggest that more conservative investors should have a higher ratio of
long-term bonds to stocks in their portfolios. Canner, Mankiw, and Weil
document this feature of conventional investment advice and point out that
it is inconsistent with the mutual fund theorem of static portfolio analysis,
according to which risk aversion should affect only the ratio of cash to risky
assets and not the relative weights on different risky assets.

Our analysis shows that static portfolio analysis can be seriously mislead-
ing when investment opportunities are time-varying and investors have long
time horizons. The portfolio allocations to equities and indexed bonds in
Panel A of Table 3.3 are strikingly consistent with conventional investment
advice. Aggressive long-term investors should hold stocks, while conserva-
tive ones should hold long-term bonds and small amounts of cash. The
explanation is that long-term bonds, and not cash, are the riskless asset for
long-term investors.

A weakness in this resolution of the asset allocation puzzle is that it
assumes that long-term bonds are indexed, or equivalently, that there is no
inflation uncertainty. Panel A of Table 3.3 shows that nominal bonds play
a much smaller role in optimal portfolios. In a world with no indexation,

3Recall that optimal myopic demand for a single risky investment, or for a risky in-
vestment that is independent of other risky investments, is proportional to mean excess
return divided by variance. Equivalently, it is proportional to Sharpe ratio divided by
standard deviation. Although equities have a higher Sharpe ratio than indexed bonds,
their standard deviation is much higher so the optimal equity share is lower.
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unconstrained investors with low risk aversion hold modest nominal bond
positions, but constrained investors hold only equities. As risk aversion in-
creases, investors move into cash rather than long-term nominal bonds. Fig-
ure 3.2 illustrates this point. The top panel of the figure plots constrained
allocations to equities, a ten-year nominal bond and a three-month nomi-
nal bill, while the bottom panel plots constrained myopic allocations. The
horizontal axis measures relative risk tolerance (1/v) rather than relative
risk aversion, because both total and myopic allocations are linear in risk
tolerance when portfolio constraints are not binding. Infinitely conservative
investors with 1/ = 0 are plotted at the right edge of the figure. As in the
tables we set ¥ = 1, but the choice of 1 has very little effect on the results.

Risk-tolerant investors at the left of Figure 3.2 are fully invested in eq-
uities. Highly risk-averse investors hold most of their portfolios in cash,
although they also hold some ten-year nominal bonds. The bottom panel
shows that long-term bonds are held purely for hedging purposes. The my-
opic demand for long-term bonds is extremely close to zero at all levels of
risk aversion.

The portfolio allocations to nominal bonds in Panel A of Table 3.3 and
Figure 3.2 do not correspond well with conventional investment advice.
In order to rationalize the conventional wisdom about long-term nominal
bonds, one must assume that future interest rates will be generated by a
different process than the one estimated in 1952-96, a process with less
uncertainty about future inflation. Interestingly, we have estimated just
such a process over the Volcker-Greenspan sample period 1983-96. Panel
B of Table 3.3 repeats Panel A using our 1983-96 estimates and finds that
even when only nominal bonds are available, aggressive long-term investors
should hold stocks, while conservative ones should hold primarily long-term
nominal bonds along with small quantities of stocks.*

Figure 3.3, whose structure is identical to Figure 3.2, emphasizes this
result. Panel A shows that almost all investors should be fully invested in
equities and long-term nominal bonds when they face a term structure like
the one estimated for the Volcker-Greenspan era. Only extremely risk-averse

4During the 1983-96 period the interest-rate sensitivity of a 10-year indexed zero-
coupon bond is considerably less than that of an indexed perpetuity. = Therefore an
infinitely risk-averse investor would like to hold a leveraged position in 10-year indexed
zeros, which was not the case in our 1952-96 model. To maintain comparability with that
model, in Panel B of Table 3.3 and Figure 3.3 we replace the 10-year zero-coupon bond
with a 20-year zero-coupon bond. This ensures that the optimal indexed portfolio for an
infinitely risk-averse investor is available even when borrowing and short-sales constraints
are imposed.
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investors should hold some cash in their portfolios. Panel B shows that
intertemporal hedging motives account for most of this demand for long-term
nominal bonds. If investors behaved myopically and ignored the hedging
properties of long-term bonds, their portfolios would contain mostly equities
and cash. The top panel of Figure 3.3 also shows that the ratio of nominal
bonds to equities in the optimal portfolio increases with risk aversion, just
as recommended by conventional investment advice. If investors behaved
myopically, this ratio would be constant when portfolio constraints are not
binding, as shown in the bottom panel.

Although our 1983-96 model replicates important features of conven-
tional investment advice, it still falls short in one respect. The optimal
portfolios in Figure 3.3 contain very little cash relative to the recommended
portfolios reported by Canner, Mankiw, and Weil (1997). We do not at-
tempt to match those portfolios more accurately, but suspect that it can be
done either by using a term-structure process intermediate between the two
processes we have estimated, or by modelling liquidity motives for holding
cash.

3.3 Conclusion: Bonds, James, Bonds

If one uses conventional mean-variance analysis, it is hard to explain why
any investors hold large positions in bonds. Mean-variance analysis treats
cash as the riskless asset, and treats bonds merely as another risky asset like
stocks. Bonds are valued only for their potential contribution to the short-
run excess return, relative to risk, of a diversified risky portfolio. This view
tends to relegate bonds to a minor supporting role in the recommended
portfolio, since excess bond returns have historically been fairly low and
bond returns have been highly variable in the short run. Over the period
1952-96 reported in Table 3.2, for example, the average excess return on
10-year US Treasury zero-coupon bonds over 3-month Treasury bills was
less than 1% while the standard deviation of this return was over 11%.
Accordingly the annualized Sharpe ratio for bonds, the ratio of their average
excess return to their standard deviation, was less than 0.1. Over the same
period the US equity market had an average excess return of almost 7%
and a standard deviation of 16%, implying a Sharpe ratio above 0.4. The
comparison looks somewhat more favorable for bonds in the shorter 1983-96
sample also shown in Table 3.2, but it is even less favorable for bonds if one
studies the early postwar period of slowly rising inflation or the very recent
period of spectacular stock returns.
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A long-horizon analysis treats bonds very differently, and assigns them a
much more important role in the optimal portfolio. For long-term investors,
money market investments are not riskless because they must be rolled over
at uncertain future interest rates. Just as borrowers have come to appreciate
that short-term debt carries a risk of having to refinance at high rates during
a financial crisis, so long-term investors must appreciate that short-term
investments carry the risk of having to reinvest at low real rates in the future.
For long-term investors, an inflation-indexed long-term bond is actually less
risky than cash. Such a bond does not have a stable market value in the
short term, but it delivers a predictable stream of real income and thus
supports a stable standard of living in the long term.

The implications for portfolio choice depend both on the assets that are
available, and on the investor’s view about the risk of inflation. If inflation-
indexed bonds are available, then long-term investors should shift out of
equities and into inflation-indexed bonds as they become more conservative.
Even if only nominal bonds are available, conservative long-term investors
should hold large positions in long-term bonds if they believe that inflation
risk is low as we have estimated it to be in the US in the period 1983-96.
In this sense the message of this chapter might be summarized as “Bonds,
James, Bonds”!

Inflation risk is however a serious caveat. In the presence of significant
inflation risk, of the sort we have estimated for the US in the period 1952-96,
nominal bonds are risky assets for long-term investors and are not good sub-
stitutes for inflation-indexed bonds. This conclusion illustrates the general
point that strategic asset demands depend on many features of the envi-
ronment: not just on the conditional means and variances of returns that
determine myopic asset demands, but also on the processes driving relevant
state variables such as inflation and real interest rates.
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Chapter 4

Is the Stock Market Safer for
Long-Term Investors?

In Chapter 3 we studied strategic asset allocation in a model with time-
varying real interest rates and inflation, and constant risk premia on all
assets. We found that short-term safe assets are not riskless for long-term
investors, because they must be rolled over at uncertain future rates. The
riskless asset for a long-term investor is a long-term inflation-indexed bond,
and nominal bonds are also close to riskless if inflation risk is low. Thus
conservative long-term investors should tilt their portfolios towards bonds,
rather than towards cash as predicted by the standard short-term analysis.

The model of Chapter 3 does not imply any special role for stocks in the
portfolios of long-term investors. Intertemporal hedging demand in that
model is determined by covariance with future real interest rates, which is
the same for stocks as for bonds of the same duration; by variance, which
is higher for stocks than for bonds; and by covariances among the available
assets.  Thus intertemporal hedging considerations benefit bonds, rather
than stocks. An aggressive long-term investor will hold stocks because of
their high average returns, but this is the same consideration that influences
an aggressive short-term investor.

These results contrast with the commonly held view that long-term in-
vestors can afford to increase their stockholdings because stocks are com-
paratively safe for such investors. Jeremy Siegel (1994) expresses this view
particularly clearly in his popular book Stocks for the Long Run:

“It is widely known that stock returns, on average, exceed
bonds in the long run. But it is little known that in the long
run, the risks in stocks are less than those found in bonds or
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even bills!.... Real stock returns are substantially more volatile
than the returns of bonds and bills over short-term periods. But
as the horizon increases, the range of stock returns narrows far
more quickly than for fixed-income assets.... Stocks, in contrast
to bonds or bills, have never offered investors a negative real
holding period return yield over 20 years or more. Although
it might appear riskier to hold stocks than bonds, precisely the
opposite is true: the safest long-term investment has clearly been
stocks, not bonds.” (pp. 29-30).

We saw in Chapter 2 that if asset returns are independent and identically
distributed (iid) over time, then there is a precise mathematical relationship
between risk at a short horizon and at a long horizon. Siegel’s measure
of risk is the standard deviation of the annualized return, which must be
inversely proportional to the square root of the horizon if returns are iid.
Any evidence that risk does not scale with horizon in this way is indirect evi-
dence for predictability of asset returns. In order to evaluate such evidence
we need a general empirical framework that allows for predictability—mnot
just predictability of real interest rates, as in Chapter 3, but predictability
of risk premia as well.

In this chapter we use a vector autoregressive (VAR) system to capture
the historical predictability of asset returns. This type of model has been
used in a similar context by Kandel and Stambaugh (1987), Campbell (1991,
1996), Hodrick (1992), and Barberis (2000) among others.  Section 4.1
develops the framework and solution method, and section 4.2 applies it to
measure stock and bond market risk in historical US data. Section 4.1.1 sets
up the model, and section 4.1.2 extends our approximate solution method
for the intertemporal consumption and portfolio choice problem to handle
this case. Section 4.1.3 studies a special but illuminating case, solved in
Campbell and Viceira (1999), in which there is a constant real interest rate
and the investor allocates wealth between short-term safe assets and stocks,
which follow a mean-reverting process. Section 4.2.1 estimates a VAR
on historical US data, section 4.2.2 derives implications for asset risks at
different investment horizons, and section 4.2.3 derives optimal portfolio
weights for bills, nominal bonds, and stocks. In section 4.2.4 we use the
VAR to impute hypothetical returns on inflation-indexed bonds, redoing the
portfolio analysis for the case where inflation-indexed bonds are available.
Section 4.3 concludes. The empirical work in the chapter is closely based
on Campbell, Chan, and Viceira (2000).
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4.1 Long-Term Portfolio Choice in a VAR Model

4.1.1 VAR specification

We begin by establishing notation that can handle multiple risky assets and
forecasting variables. We work with a risky benchmark return, 71, and
a vector of n excess returns over the benchmark return, ryy1— 79¢41¢. We
include other forecasting variables, such as the nominal interest rate or the
dividend-price ratio on stocks, in a vector s;y1. We stack the benchmark
return, excess risky returns, and other state variables into a single m x 1
state vector zyy1:
T0,,t+1
Zt+1 = | Tt+1 —To,e+1L | - (4.1)
St+1

We postulate that the dynamics of z;11 are well captured by a first-order
vector autoregressive process or VAR(1). The use of a VAR(1) is not
restrictive since any vector autoregression can be rewritten in this form
through an expansion of the vector of state variables. Then we have

Zir1 = Po + P12 + Viy, (4.2)

where ®( is the m x 1 vector of intercepts, ®; is the m X m matrix of
slope coefficients, and v;11 is the m x 1 vector of shocks to the state vari-
ables. We assume that v;y is normally distributed white noise, with mean
zero and variance-covariance matrix ¥,. Thus, we allow the shocks to be
cross-sectionally correlated, but assume that they are homoskedastic and
independently distributed over time. The VAR framework conveniently
captures the dependence of expected returns of various assets on their past
histories as well as on other predictive variables. The stochastic evolution
of these other state variables sy41 is also determined by the system.

The assumption of homoskedasticity is of course restrictive. It rules out
the possibility that the state variables predict changes in risk; they can affect
portfolio choice only by predicting changes in expected returns. Authors
such as Campbell (1987), Harvey (1989, 1991), and Glosten, Jagannathan,
and Runkle (1993) have explored the ability of the state variables used here
to predict risk and have found only modest effects that seem to be dominated
by the effects of the state variables on expected returns. In the next chapter,
following Chacko and Viceira (1999), we show how to include changing risk
in a long-term portfolio choice problem.

It is common in the continuous-time finance literature to assume that
markets are complete, that is, that the state variables governing investment
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opportunities are driven by the same stochastic processes that drive asset
returns so that innovations to investment opportunities are perfectly hedge-
able using financial assets. The model (4.1) does not make this assumption.
Whenever there are additional state variables s;y1 in the vector z;11, and
whenever the variance-covariance matrix of the VAR system 3, has full
rank, then shocks to investment opportunities are imperfectly correlated
with shocks to asset returns and cannot be perfectly hedged using financial
assets. The ability to handle incomplete markets is an important empirical
advantage of this model.

Given our homoskedastic VAR formulation, the unconditional distribu-
tion of z; is easily derived. The state vector z; inherits the normality of the
shocks v¢;+1. It has unconditional mean p, and variance-covariance matrix
3, that can straightforwardly be calculated from the VAR coefficients ®,
@, and X,. We can also calculate the conditional moments of linear and
quadratic combinations of the variables.

4.1.2 Solving the model

We seek a solution that satisfies the loglinear Euler equations for the Epstein-
Zin model, given the approximations laid out in the previous two chapters.
That is, we need to find consumption and portfolio rules that satisfy the con-
sumption Euler equation (2.46) and the portfolio Euler equation for multiple
risky assets (2.48). The consumption Euler equation can be rewritten, us-
ing our loglinear approximation to the intertemporal budget constraint, as
a difference equation in ¢; — wy:

ct—wg = —pYlog 6 —px, +p(1 =) Ee(rp41) +pk+ pEi(cti1 —wit1), (4.3)

where x,; = (0/2¢)Var; (Aciy1 — rpey1).  The portfolio Euler equation
can be rewritten, using our approximation to the intertemporal budget con-
straint and the fact that Aciy1 = A(ci41 — wig1) + Awgg, as
2

Ey(riq1 — TO,t—&-lL)"‘% = gac—w,t +y0pt — O0, (4.4)
where cr% is a vector containing the variances of excess returns, o._,; =
Covi(rey1 — 70,4418, Ct41 — Wey1) is a vector containing the covariances of
excess returns with the log consumption-wealth ratio, o+ = Cove(rey1 —
T0t+1L, Tp’t+1) is a vector containing the covariances of excess returns with
the log portfolio return, and ooy = Covi(ri1 — To¢+1L,T0,¢+1) is a vec-
tor containing the covariances of excess returns with the log return on the
benchmark asset.

72



CHAPTER 4. IS THE STOCK MARKET SAFER FOR LONG-TERM
INVESTORS?

To solve the model, we now guess that the optimal portfolio and con-
sumption rules take the form

oy = ap+ Az, (4.5)
c—wy = bg+ b'lzt + bIQZtZ;bQ.

That is, the optimal portfolio rule is linear in the VAR state vector but the
optimal consumption rule is quadratic. ag is an n-vector, Aj is an n X m
matrix, bg is a scalar, and by and bsy are m-vectors.

The motivation for this guess is that (4.5) is the simplest portfolio rule
that allows the investor to shift his portfolio in response to changing risk
premia. All the variables in the state vector z; can potentially affect risk
premia, and thus the portfolio vector a; must be free to respond to them; we
assume that it does so linearly. Given a linear portfolio rule, the expected
portfolio return implied by (2.22) is quadratic in the state variables. State
variables affect the expected portfolio return both directly, by shifting the
expected returns on existing asset holdings, and indirectly, by shifting the
asset allocations. Since each of these effects is linear, their interaction is
quadratic and this makes the expected portfolio return quadratic. But then
the consumption Euler equation (4.3) implies that the log consumption-
wealth ratio must also be at least quadratic in the state variables. The
consumption Euler equation also has a conditional variance term, but this
too turns out to be quadratic in the state variables given our homoskedastic
VAR specification. Kim and Omberg (1996) derived a similar linear-
quadratic solution for a finite-horizon continuous-time model in which the
investor has power utility defined over terminal wealth.

To verify our guess and solve for the parameters of the solution, we
write the conditional moments that appear in (4.4) as functions of the VAR
coefficients and the unknown parameters of (4.5) and (4.6). We then solve
for the parameters that satisfy (4.4). This gives us the parameters in (4.5)
as functions of the VAR coefficients and the still unknown parameters of
(4.6). Next we substitute into (4.3), both sides of which are quadratic
in the VAR state variables given our conjectured quadratic form for the
optimal consumption-wealth ratio. Finally we solve this system of quadratic
equations for the parameters of (4.6).

Given the loglinearization parameter p, this solution is analytical. Camp-
bell and Viceira (1999) write it out explicitly for the special case in which
there is a constant riskless interest rate, a single risky asset, and a single
forecasting variable for the excess risky return which itself follows an AR(1)
process. We explain this case in section 4.1.3. Campbell, Chan, and Vi-

73



CHAPTER 4. IS THE STOCK MARKET SAFER FOR LONG-TERM
INVESTORS?

ceira (2000) extend the approach to the general VAR case, for which it is
more convenient to solve the linear-quadratic equations numerically.

The solution presented here is exact in continuous time when asset prices
follow continuous diffusion processes, if the consumption-wealth ratio is con-
stant. The consumption-wealth ratio is constant if the elasticity of intertem-
poral substitution @ = 1, but in all other cases, the solution is only an
approximation. Campbell and Koo (1997) and Campbell, Cocco, Gomes,
Maenhout, and Viceira (1999) evaluate the accuracy of the approximate
solution, respectively in models with exogenous portfolio returns and exoge-
nous returns on underlying assets, and find that it is acceptably accurate
for elasticities of intertemporal substitution up to about 3. In particular,
this implies that low elasticities of intertemporal substitution of the sort
estimated by macroeconomists should be consistent with the use of the ap-
proximate solution.

The case ¥ = 1 is also important because only in this case do we know
that the value of p equals §. In all other cases we must solve for p along
with the other parameters of the model. We do this numerically; we ini-
tialize p = 6, solve for the other parameters of the model, calculate the
implied mean log consumption-wealth ratio from (4.6), recalculate p, and
repeat until convergence. This process is extremely rapid except in cases
where the infinite-horizon optimization problem is ill-defined (for example,
because average rates of return are too high relative to the investor’s rate
of time preference, so that a finite-horizon investor’s utility diverges as the
investment horizon increases).

An important property of the model is that given the loglinearization
parameter p, the optimal portfolio rule does not depend on the intertemporal
elasticity of substitution . 1 only affects portfolio choice to the extent that
it enters into the determination of p. Empirically, this indirect effect through
p seems to be minor.

4.1.3 A special case: One risky asset and a constant real
interest rate

Campbell and Viceira (1999) study a special case in which there is a short-
term riskless asset with a constant real log return ry. Because this riskless
real return is constant, it is a safe investment both for short-term investors
and for long-term investors. Thus the issue emphasized in Chapter 3, that
the identity of the riskless asset may be different for investors with different
horizons, does not arise here. Campbell and Viceira (1999) also assume
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that there is a single risky asset (“stocks”) with log return ry;1 given by

rep1 — Egren = ugq, (4.7)

where w41 is the innovation to the risky asset return, normally distributed
with mean zero and variance 02. The expected excess log return on the
risky asset, adjusted for one-half its variance in the familiar manner, equals

a state variable z;:!
2

g
Et’l“tJrl —Tf + 7“ = T¢. (48)

Finally, z; follows an AR(1) process with mean p and persistence ¢. The
innovation to x4 is written 7, ,,, assumed to be normally distributed with

mean zero and variance O'%Z

Tpp1 = p+ O(xy — ) + 041 (4.9)

Modelling mean reversion

The innovations w1 and 7;,; can be correlated, with covariance o,.
In fact, this covariance is what generates intertemporal hedging demand for
the risky asset by long-term investors. The state variable x; summarizes
investment opportunities at time ¢. Thus the conditional covariance between
the risky asset return and the state variable measures the ability of the risky
asset to hedge time-variation in investment opportunities. This covariance
is given by
Covi(res1, Ter1) = Cove(rept, Te42) = Onu- (4.10)

The model can be solved for arbitrary o,,, but we focus attention on the
case where o,, < 0. This case captures the notion that stocks are “mean-
reverting”; an unexpectedly high return today reduces expected returns in
the future, and thus high short-term returns tend to be offset by lower
returns over the long term. This offset reduces the conditional variance of
long-term stock returns, since

Vary(rip1 +rip2) = 2Varg(rig1) + 2Covi(ri1, re42)
= 2Vary(rip1) 4+ 204y < 2Varg(ri41).  (4.11)
!This is a slight change from the parameterization of Campbell and Viceira (1999),

which omitted the term o2 /2 on the left-hand side of (4.8). Accordingly some equations
here are slightly altered from the corresponding equations in Campbell and Viceira.
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That is, the conditional variance of stock returns does not grow in proportion
with the investment horizon, but grows more slowly. If we calculate a
conditional variance ratio,

Vary(rep1 + revo + e k)
VRi(K) =
H(K) KVary(re1) ’

(4.12)

the ratio will be less than one at all horizons K. Stocks will appear relatively
safer to long-term investors.

The discussion above concentrates on conditional variances, since these
are what matter to investors. The empirical literature on mean-reversion,
initiated by Poterba and Summers (1988) and Fama and French (1988b),
typically emphasizes unconditional variances instead. These can behave
quite differently from conditional variances since

COV(Tt+17 $t+1) = COV(IEt + U1, $t+1) = ¢U§ + Onu- (4-13)

Persistence in the process for x;41 can make this unconditional covariance
zero, even if the conditional covariance is negative. Campbell (1991) and
Campbell, Lo, and MacKinlay (1997, Chapter 7) emphasize this point.
More generally, the unconditional variance ratio,

Var(riy1 + regpe + ol k) VR(K)
VR(K) = =
(K) KVar(rey1) 1-R¥K)’

(4.14)

where R?(K) is the explanatory power of a regression of the K-period stock
return onto the state variable ;. Thus the unconditional variance ratio is
always greater than the conditional variance ratio; empirical results using
the former understate the risk-reduction that is relevant for long-term in-
vestors. The difference between the two variance ratios can be substantial,
since authors such as Fama and French (1988a) and Campbell and Shiller
(1988a,b) have found long-horizon R? statistics as large as 40%. We explore
this issue empirically in section 4.2.2.

Solving the model

The model is a special case of the general VAR system. Thus the
solution takes the form
ar = ag + a1y, (4.15)

¢ — wy = by + by + ng?. (4.16)
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The quadratic expression for the consumption-wealth ratio implies that the
value function in (2.49) takes the exponential-quadratic form

V= exp | 2 ‘ﬁligfpl Jn 1111th+ 1%¢x§ L (417)
Kim and Omberg (1996) derive a similar exponential-quadratic solution in
a related continuous-time model, where a single state variable follows a
continuous-time AR(1) (Ornstein-Uhlenbeck) process and the investor has
power utility defined over terminal wealth.

Given the form of the value function, it should not be surprising that
the ratios by /(1 — ) and be/(1 — 1)) play a key role in the solution. These
ratios capture the linear and quadratic effects of the state variable z; on
utility, which have the same sign as the effects of x; on consumption only
when income effects dominate substitution effects, that is, when ¥ < 1.
Campbell and Viceira (1999) show that the parameters of the portfolio rule
are related to by /(1 — ) and be/(1 — v) as follows:

- (Y () - ()] (). o
g () () e

For a myopic investor, we would have ag = 0 and a; = 1/702, so intertem-
poral hedging demand accounts for the entire right-hand side of (4.18) and
the second term on the right-hand side of (4.19).

Campbell and Viceira (1999) show that be/(1 — ) > 0 and does not
depend on the average excess stock return p, while by/(1 — ) = 0 when
1 = 0 and should be expected to have the same sign as p. The empirically
relevant case is that where p, by /(1—1), and by /(1—1)) are all positive, while
Onu is negative so —oy,/ 02 is also positive. In this case the intercept of the
portfolio rule, ag, is positive for conservative investors with v > 1, which
implies that such investors will hold stocks even when the expected excess
return is zero. This is a striking result since it contradicts the well-known
principle of short-term portfolio choice that a risk-averse investor will never
wish to take on risk without receiving a reward for it.

The explanation for this result is as follows. With o, < 0, stocks tend
to have high returns when their expected future returns fall. With u > 0,
the investor is normally long in stocks, so a decline in expected future stock
returns is normally a deterioration in the investment opportunity set. A
conservative investor with v > 1 wants to hedge the risk of deteriorating
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investment opportunities by holding assets that deliver increased wealth
when investment opportunities are poor. Stocks are just such an asset, so
the investor has positive hedging demand for stock even when the current
risk premium on stocks is zero.

Although the investor is normally long in stocks, if the expected excess
return becomes significantly negative, a decline in expected future stock
returns can represent an improvement in the investment opportunity set
because it creates a profitable opportunity to short stocks. At this point in
the state space the sign of hedging demand for stocks reverses. Hedging
demand thus moves in the same direction as the state variable z;, which
explains why the slope of hedging demand—the second term on the right-
hand side of (4.19)—is positive. The positive slope of hedging demand
allows it to reverse sign for sufficiently negative x;.2 Perhaps surprisingly,
the positive slope of hedging demand implies that long-term investors are
more aggressive market timers than myopic investors, although the difference
in slope is quite modest for empirically reasonable parameter values.

This solution is illustrated in Figure 4.1, which shows three alternative
portfolio rules for a conservative investor with v > 1 facing the benchmark
case of mean-reverting stock returns. The horizontal line is a buy-and-
hold strategy that assumes a constant expected excess stock return equal to
the true unconditional mean p. The line marked “Myopic investor” is the
optimal strategy for a single-period investor who observes the conditional
expected stock return x;. The line marked “Strategic investor” is the opti-
mal strategy for a long-term investor. This line is slightly steeper than the
others, and is shifted upwards so that it has a positive intercept.

The discussion so far assumes that the average level of excess stock re-
turns, p, is positive. Positive average excess stock returns lead the investor
normally to maintain a long position in stocks for which a decrease in the ex-
pected stock return represents a deterioration in investment opportunities.
If i were negative, however, the investor would normally have a short posi-
tion in stocks for which a decrease in the expected stock return represents
an improvement in investment opportunities. In this case the normal sign of
hedging demand would be negative for an investor with v > 1. The slope of
hedging demand is unaffected by the coefficient p, however, so in this case
a sign reversal of the normal hedging demand occurs for sufficiently positive
x¢. The case p = 0 is intermediate; in this case we have a symmetrical
model in which the investor gains equally from increases and decreases in
¢ away from its mean, and hedging demand has a positive slope but no

?Kim and Omberg [1996] give a clear account of this effect (Figure 4 and pp. 153-154).
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Portfolio Allocation Strategic investor
to Stocks
A

Myopic investor

Buy-and-hold

Expected Excess
> Stock Return

Long-run Mean

Figure 4.1: Alternative portfolio rules
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intercept.

The model implies that hedging demand is not monotonic in risk aver-
sion. At v = 1, hedging demand is zero so initially it increases with risk
aversion in the benchmark case. Eventually, however, hedging demand de-
creases with risk aversion since a sufficiently conservative investor will only
hold the safe asset; such an investor will not wish to exploit stock-market
opportunities and will not have any motive to hedge variation in those op-
portunities. One can show that as v increases, the coefficients b1 /(1 — 1)),
ba/(1 — 1), ap, and a; all approach zero.

Campbell and Viceira (1999) examine the empirical implications of this
model in some detail, using the log dividend-price ratio as an empirical
proxy for the state variable x;. Unfortunately there is an error in the
empirical estimates reported in that paper; the estimates understate the
predictability of postwar quarterly stock returns and the absolute value of
the correlation between innovations in stock returns and dividend yields, and
thus understate the magnitude of hedging demands. This error is explained
in Campbell and Viceira (2000), which reports corrected results.

It is interesting to relate the model of this section to the advice of Siegel
(1994) that long-term investors should aggressively buy and hold equities.
Siegel bases his advice on the reduced risk of stock returns at long horizons.
We have seen that such reduced risk can only arise from mean reversion in
stock returns, a fact recognized by Siegel when he writes:

“Stocks have what economists call mean-reverting returns,
meaning that over long periods of time, high returns seem to
be followed by periods of low returns and vice versa. On the
other hand, over time, real returns on fixed-income assets become
relatively less certain. For horizons of 20 years or more, bonds
are riskier than stocks.” (p.33).

The difficulty with Siegel’s investment advice is that mean reversion
is equivalent to predictable variation in stock returns, and such predictable
variation is inconsistent with the optimality of a buy-and-hold strategy. The
optimal strategy is instead a strategic market-timing strategy of the sort il-
lustrated in Figure 4.1. Campbell and Viceira (1999, 2000) show that there
are large utility losses from ignoring the market-timing aspect of the opti-
mal investment strategy. Siegel’s investment advice is clearly suboptimal
unless an investor is constrained from taking on leverage, in which case the
constrained optimal strategy might involve a 100% equity allocation over
much of the state space. FEven in this case, however, sufficiently positive
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past returns would drive down the expected future return to the point where
the long-term investor should cut back his equity allocation.

4.2 Stock and Bond Market Risk in Historical US
Data

4.2.1 Data and VAR estimation

In the previous section we provided a general theoretical framework for
strategic asset allocation, and explored a special case with a constant real
interest rate and a mean-reverting stock return. Although that case is
illuminating, it is too special to provide a solid foundation for investment
advice. In this section, we return to the general framework and use it to
investigate how investors who differ in their consumption preferences and
risk aversion allocate their portfolios among three assets: stocks, nominal
bonds, and nominal Treasury bills. Investment opportunities are described
by a VAR system that includes short-term ex-post real interest rates, excess
stock returns, excess bond returns and variables that have been identified
as return predictors by empirical research: the short-term nominal interest
rate, the dividend-price ratio, and the yield spread between long-term bonds
and Treasury bills.

The short-term nominal interest rate has been used to predict stock
and bond returns by authors such as Fama and Schwert (1977), Camp-
bell (1987), and Glosten, Jagannathan, and Runkle (1993). An alternative
approach, suggested by Campbell (1991) and Hodrick (1992), is to stochasti-
cally detrend the short-term rate by subtracting a backwards moving average
(usually measured over one year). For two reasons we do not adopt this
alternative here. First, we emphasize a long-term annual data set in which
we cannot measure a one-year moving average of short rates. Second, we
want our model to capture inflation dynamics. If we include both the ex-
post real interest rate and the nominal interest rate in the VAR system, we
can easily calculate inflation by subtracting one from the other. This allows
us to separate nominal from real variables, so that we can extend our model
to include a hypothetical inflation-indexed bond in the menu of assets. We
consider this extension in section 4.2.4.

We compute optimal portfolio rules for different values of v, assuming
either ) = 1 or ¢» = y~L. In both cases, we set § = 0.92 in annual terms.
The first case gives the exact solution of Giovannini and Weil (1989), where
the consumption-wealth ratio is constant and equal to 1 — §. This implies
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that the loglinearization parameter p = 1 — exp(E[c: — wy]) is equal to 6.
The second case is the familiar power utility specification.

Data description

Our calibration exercise is based on annual and quarterly data for the US
stock market. The annual dataset covers over a century from 1890 to 1995.
Its source is the data used in Grossman and Shiller (1981), updated for the
recent period by Campbell (1999).2 This dataset contains data on prices
and dividends on S&P 500 stocks as well as data on inflation and short-
term interest rates. The equity price index is the end-of-December S&P 500
Index, and the price index is the Producer Price Index. The short rate is
the return on 6-month commercial paper bought in January and rolled over
July. We use this dataset to construct time series of short-term, nominal and
ex-post real interest rates, excess returns on equities, and dividend-yields.
Finally, we obtain data on long-term nominal bonds from the long yield
series in Shiller (1989), which we have updated using the Moody’s AAA
corporate bond yield average. We construct the long bond return from this
series using the loglinear approximation technique described in Chapter 10
of Campbell, Lo and MacKinlay (1997):

Tnt+1 = Dn,tyn,t - (Dn,t - 1) Yn—1,t+1,

where n is bond maturity, the bond yield is written Y, the log bond yield
Ynt = log (1 +Yy:), and Dy is bond duration. We calculate duration at
time ¢ as
1= (1+ Yoe) "

1— (14 Y)Y

and we set n to 20 years. We also approximate yn—1,t+1 by Un,t+1-

The quarterly data begin in 1952:2, shortly after the Fed-Treasury Ac-
cord that fundamentally changed the stochastic process for nominal interest
rates, and end in 1997:4. We obtain our quarterly data from the Center for
Research in Security Prices (CRSP). We construct the ex post real Trea-
sury bill rate as the difference of the log return (or yield) on a 90-day bill
and log inflation, and the excess log stock return as the difference between
the log return on a stock index and the log return on the 90-day bill. We
use the value-weighted return, including dividends, on the NYSE, NASDAQ
and AMEX markets. We construct the excess log bond return in a similar

n,t

3See the Data Appendix to Campbell (1999), available on the author’s website.
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way, using the 5-year bond return from the US Treasury and Inflation Series
(CTI) file in CRSP.

The nominal yield on Treasury bills is the log yield on a 90-day bill.
To calculate the dividend-price ratio, we first construct the dividend payout
series using the value-weighted return including dividends, and the price
index series associated with the value-weighted return excluding dividends.
Following the standard convention in the literature, we take the dividend
series to be the sum of dividend payments over the past year. The dividend-
price ratio is then the log dividend less the log price index. The yield spread
is the difference between the 5-year zero-coupon bond yield from the CRSP
Fama-Bliss data file (the longest yield available in the file) and the bill rate.

VAR estimation

Table 4.1 gives the first and second sample moments of the data. Except
for the dividend-price ratio, the sample statistics are in annualized, percent-
age units. Mean excess log returns are adjusted by one-half their variance
to account for Jensen’s Inequality. For the postwar quarterly dataset, Trea-
sury bills offer a low average real return (a mere 1.813% per year) along with
low variability. Stocks have an excess return of 7.119% per year compared
t0 0.712% for the 5-year bond. Although volatility is much higher for stocks
than for bonds (16.093% vs. 5.576%), the Sharpe ratio is almost three and
a half times as high for stocks as for bonds. The average Treasury bill rate
and yield spread are 5.867% and 0.616%, respectively.

Covering a century of data, the annual dataset gives a different descrip-
tion of the relative performance of each asset. The real return on short-term
nominal debt is quite volatile, due to greater volatility in both real interest
rates and inflation before World War II. Stocks offer a slightly lower excess
return, and yet a higher standard deviation, than the postwar quarterly
data. The Depression period is largely responsible for this result. The long-
term bond also performs rather poorly, giving a Sharpe ratio of only 0.105
versus a Sharpe ratio of 0.345 for stocks. The bill rate has a lower mean in
the annual dataset, but the yield spread has a higher mean. Both bill rates
and yield spreads have higher standard deviations in the annual dataset.
Figure 2 plots the history of the variables included in the annual VAR.

Table 4.2 reports the estimation results for the VAR system in the annual
dataset, while Table 4.3 reports results for the quarterly dataset (Panel B).
The top section of each table reports coefficient estimates (with ¢-statistics
in parentheses) and the R? statistic (with the p-value of the F test of joint
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Table 4.1: Sample Statistics

Sample Moment 1890 - 1995  1952Q2 - 1997Q4
1) E[f, —m)+0%(r}, —m)/2 2.112 1.813
2)  o(rf,—m) 8.891 1.460
(3) E[S e = o =8 )2 6.242 7.119
4) o, -1, 18.107 16.093
(5) SR =(3)/(4) 0.345 0.442
6) E[rS n ol =82 0.661 0.712
(1) olrd,—1%y) 6.299 5.576
8) SR= (6) /(7) 0.105 0.128
9)  E[ 4.321 5.867
(10)  o(y) 2.611 1.555
(11)  Eld; — p{] -3.079 -3.371
(12)  o(ds — ) 0.275 0.244
(13)  E[yS, —4i 0.876 0.616
14) oS, -4t 1.459 0.588

Note: rit = log return on T-bills, m; = log inflation rate, rf,t = log return on equities,
rfm = log return on nominal bond, (d — p): = log dividend-price ratio, rb; = relative bill
rate, y;s;’t = log yield on the nominal bond, and yft is the short yield. The bond is a
5-year nominal bond in the quarterly dataset and a 20-year for the annual dataset.
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significance in parentheses) for each equation in the system.* The bottom
section of each table shows the covariance structure of the innovations in
VAR system. The entries above the main diagonal are correlation statistics,
and the entries on the main diagonal are standard deviations multiplied by
100. All variables in the VAR are measured in natural units, so standard
deviations are per year in Table 4.2 and per quarter in Table 4.3.

The first row of each table corresponds to the real bill rate equation.
Only the lagged real bill rate and the lagged nominal bill rate have ¢-statistics
above 2 in both sample periods. The rest of the variables are either not
significant or only marginally significant in predicting real bill rates one
period ahead.

The second row corresponds to the equation for the excess stock return.
Predicting excess stock returns is difficult: This equation has the lowest R?
in the annual sample, and the second lowest R? in the quarterly sample. The
dividend-price ratio, with a positive coefficient, is the only variable with a
t-statistic well above 2. The coeflicient on the lagged nominal short-term
interest rate is marginally significant in the quarterly sample, and it has a
negative sign in both samples. Lagged excess bond returns and yield spreads
both have positive coefficients, but they are not statistically significant.

The third row is the equation for the excess bond return. In the long
annual dataset, lagged excess returns on stocks and bonds, real Treasury
bill rates, and yield spreads help predict future excess bond returns. In the
quarterly postwar data, only lagged excess returns on stocks help predict
future excess bond returns. The fit of the equation is also much worse than
the fit in the annual sample. In part, this difference in results may reflect
approximation error in our procedure for constructing annual bond returns;
the possibility of such error should be kept in mind when interpreting our
annual results.

The last three rows report the estimation results for the remaining state
variables, each of which are fairly well described by a univariate AR(1) pro-
cess. The nominal bill rate in the fourth row is predicted by the lagged yield
spread in the quarterly data set, but the main predictor is the lagged nomi-
nal yield, whose coefficient is above 0.9 in both samples, implying extremely
persistent dynamics. The log dividend-price ratio in the fifth row also has
persistent dynamics; the lagged dividend-price ratio has a coefficient of 0.78

4We estimate the VAR imposing the restriction that the unconditional means of the
variables implied by the VAR coefficient estimates equal their full-sample arithmetic coun-
terparts. Standard, unconstrained least-squares fits exactly the mean of the variables in
the VAR excluding the first observation. We use constrained least-squares to ensure that
we fit the full-sample means.
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Table 4.2: VAR Estimation Results
Annual Sample (1890 - 1995)

Dependent rtby Try by Yt (d—p)t spry R?
Variable (t) (t) (t) () (t) (t) ()
Coeflicient Estimates
rtbey1 0.305 -0.056 0.147 0.685 -0.004 -0.869 0.239
(2.456) (-1.391) (0.973) (2.271) (-0.138) (-1.320) (0.000)
Tria1 0.111 0.087 -0.219 -0.134 0.187 1.199 0.086
(0.420) (0.703) (-0.763) (-0.191) (3.449) (0.908) (0.117)
xbiiq 0.200 0.095 -0.091 -0.083 0.009 2.573 0.421
(3.153) (2.658) (-0.652) (-0.238) (0.474) (5.070) (0.000)
Yt+1 -0.042 -0.011 0.029 0.918 -0.005 -0.029 0.783
(-1.928) (-1.571) (0.907) (12.378) (-1.027) (-0.228) (0.000)
(d—p)y1 -0.562  -0.134 0.529  -0.509 0.779 -1.686 0.677
(-2.243) (-1.228) (1.937) (-0.795) (13.666) (-1.255) (0.000)
Spris1 0.019 0.002 -0.016 0.085 0.004 0.838 0.542
(1.109) (0.357) (-0.709) (1.633) (1.093) (8.655) (0.000)
Cross-Correlation of Residuals
rtb xr xb Y (d—p) spr
rtb 7.753  -0.194 -0.029 0.130 0.131 -0.167
Tr - 17.303 0.027 -0.175 -0.713 0.210
zb - - 4.794  -0.636 -0.115 0.266
Y - - - 1.217 0.221 -0.903
(d—p) - - - - 15.624 -0.192
spr - - _ - - 0.987
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Table 4.3: VAR Estimation Results
Quarterly Sample (1952Q2 - 1997Q4)

Dependent rtby Try by Yt (d—p)t spry R?
Variable (t) (t) (t) () (t) (t) ()
Coeflicient Estimates
rtbey1 0.445 0.006 -0.018 0.287 -0.001 0.034 0.324
(6.142) (1.040) (-0.822) (3.695) (-0.519) (0.207) (0.000)
Tria1 0.256 0.061 0.355 -1.852 0.077 2.072 0.109
(0.275) (0.769) (1.492) (-2.097) (3.011) (0.857) (0.001)
xbiiq 0.159 -0.054 -0.050 0.310 0.003 0.995 0.043
(0.447) (-2.594) (-0.424) (0.771) (0.424) (0.949) (0.179)
Yt+1 0.001 0.003  -0.008 0.962 0.000 0.490 0.796
(0.016) (0.990) (-0.418) (16.990) (0.361)  (4.432) (0.000)
(d—p)y1 -0.626 -0.064 -0.334 1.047 0.939 -1.926 0.892
(-0.631) (-0.744) (-1.280) (1.144) (34.309) (-0.783) (0.000)
Spris1 -0.015 0.000 0.012 0.019 -0.001 0.497 0.277
(-0.369) (0.072) (0.961) (0.491) (-0.876) (6.460) (0.000)
Cross-Correlation of Residuals
rtb xr xb Y (d—p) spr
rtb 0.599 0.229 0.451 -0.511 -0.241 0.404
xr - 7.586 0.274 -0.211 -0.969 0.108
xb - - 2.725 -0.766 -0.321 0.413
Yy - - - 0.350 0.253 -0.899
(d—p) - - - - 7.961 -0.137
spr - - - - - 0.250
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in the annual data and 0.94 in the quarterly data. The yield spread in the
sixth row also seems to follow an AR(1) process, but is considerably less
persistent than the other variables, especially in the quarterly sample.

The bottom section of each table describes the covariance structure of
the innovations in the VAR system. Unexpected log excess stock returns
are highly negatively correlated with shocks to the log dividend-price ratio
in both samples. This result is consistent with previous empirical results
in Campbell (1991), Campbell and Viceira (1999), Stambaugh (1999) and
others. Unexpected log excess bond returns are negatively correlated with
shocks to the nominal bill rate, but positively correlated with the yield
spread. This positive correlation is 41% in the quarterly sample, and about
27% in the annual sample.

The signs of these correlations help to explain the contrasting results
of recent studies that apply Monte Carlo analysis to judge the statistical
evidence for predictability in stock and bond returns. Stock-market studies
typically find that asymptotic tests overstate the evidence for predictability
of stock returns (Hodrick 1992, Goetzmann and Jorion 1993, Nelson and
Kim 1993). Bond-market studies, on the other hand, find that asymptotic
procedures are actually conservative and understate the evidence for pre-
dictability of bond returns (Bekaert, Hodrick, and Marshall 1997). The
reason for the discrepancy is that asymptotic results in the stock market are
based on positive regression coefficients of stock returns on the dividend-
price ratio, while asymptotic results in the bond market are based on posi-
tive regression coefficients of bond returns on the yield spread. Stambaugh
(1999) shows that the small-sample bias in such regressions has the opposite
sign to the sign of the correlation between innovations in returns and innova-
tions in the predictive variable. In the stock market the log dividend-price
ratio is negatively correlated with returns, leading to a positive small-sample
bias which helps to explain some apparent predictability; in the bond mar-
ket, on the other hand, the yield spread is positively correlated with returns,
leading to a negative small-sample bias which cannot explain the positive
regression coefficient found in the data.

The signs of these correlations also have important effects on the volatil-
ity of bond and stock returns over long holding periods. We now explore
these effects in some detail as they are highly relevant for long-term investors.

4.2.2 Return volatility at short and long horizons

Our estimated VAR system implies that there are important horizon effects
on the relative volatilities of different investment strategies. In Figure 4.2
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we plot the annualized standard deviations of real returns on stocks and bills
implied by our annual VAR for investment horizons up to 100 years (panel
A) and implied by our quarterly VAR for investment horizons up to 100
quarters or 25 years (panel B).> These standard deviations are conditional;
that is, they take out movements that are predictable in advance and thus
represent variation in investment opportunities rather than risk. We also
plot conditional standard deviations for two alternative investment strategies
using nominal bonds. The “long bond rolled” strategy keeps the maturity
of the long bond constant at 20 years, buying a 20-year bond each year and
selling it the next year in order to invest in a new 20-year bond. This is the
strategy implicitly assumed in virtually all time series of long-term bond
returns. The “bond held to maturity” strategy assumes that an investor
with horizon £ buys a nominal bond with k£ years to maturity and holds it
until maturity. The standard deviation of the real return on this strategy is
just the standard deviation of cumulative inflation from time ¢ to time t+ £,
since a nominal bond held to maturity is riskless in nominal terms.

Figure 4.2 shows that stocks are mean-reverting—their long-horizon re-
turns are less volatile than their short-horizon returns—while bonds and
bills are mean-averting—their long-horizon returns are actually more volatile
than their short-horizon returns. Mean-aversion is particularly strong for
bills in the annual dataset, where persistent variation in the real interest
rate amplifies the volatility of returns over long horizons. Mean-aversion
also affects the returns on rolling long bonds in the annual dataset (because
of both variation in the real interest rate and predictability of bond returns
from the yield spread), and the returns on holding bonds to maturity in the
quarterly dataset (because of persistent movements in inflation). Mean-
reversion in stock returns was pointed out by Fama and French (1988b)
and Poterba and Summers (1988), and has been the subject of much subse-
quent research. Siegel (1998) has used long-term data to directly measure
mean-aversion in fixed-income securities and has emphasized its importance
for long-term investors, but this phenomenon has received relatively little
attention in the academic literature.

The estimated horizon effects on volatility are large enough to alter the
rankings of asset return volatilities across investment horizons. In the annual
system, stocks are far more volatile than bonds and bills at short horizons,
but safer than bills or rolling bonds at long horizons, a point stressed by

5Note that we are not looking directly at the long-horizon properties of returns, but at
the long-horizon properties of returns imputed from our first-order VAR. Thus, provided
that our VAR captures adequately the dynamics of the data, we can consistently estimate
the moments of returns over any desired horizon.
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Siegel (1998). In the quarterly system, stocks are the riskiest asset at all
horizons, but their relative risk declines sharply with the horizon. Of the
two bond strategies, rolling bonds is riskier at short horizons, but buying and
holding is riskier at long horizons since it exposes investors to the persistent
variation in inflation that has been characteristic of the postwar period.

These results suggest that long-horizon investors may have a perspective
on risk that is very different from the perspective of myopic investors. We
explore this issue in the sections that follow.

4.2.3 Strategic allocations to stocks, bonds, and bills

We have shown in section 4.1.2 that the optimal portfolio rule is linear in
the vector of state variables. Thus the optimal portfolio allocation to stocks,
bonds and bills changes over time. One way to characterize this rule is to
examine its mean and volatility. To analyze level effects we compute the
mean allocation to each asset as well as the mean hedging portfolio demand
for different specifications of the vector of state variables. Specifically, we
estimate a series of restricted VAR systems, in which the number of ex-
planatory variables increases sequentially, and use them to calculate mean
optimal portfolios for ¢ = 1 or 1/, 6 = 0.92 at an annual frequency, and
v=1, 2,5 or 20.

The first VAR system only has a constant term in each regression, corre-
sponding to the case in which risk premia are constant and realized returns
on all assets, including the short-term real interest rate, are i.i.d. The second
system includes an intercept term, the ex-post real bill rate and log excess
returns on stocks and bonds. We then add sequentially the nominal bill
rate, the dividend yield and the yield spread. Thus we estimate five VAR
systems in total.

Table 4.4 reports the results of this experiment for the annual dataset,
for values of the coefficient of relative risk aversion v equal to 1, 2, 5 and
20, with the intertemporal elasticity of substitution ¢ = 1. Table 4.5 re-
peats the results for the quarterly dataset. The entries in each column are
mean portfolio demands in percentage points when the explanatory vari-
ables in the VAR system include the state variable in the column heading
and those to the left of it. For instance, the “constant” column reports mean
portfolio allocations when the explanatory variables include only a constant
term, that is, when investment opportunities are constant. The right-hand
“spread” column gives the case where all state variables are included in the
VAR.

Tables 4.4 and 4.5 report results only for selected values of risk aver-
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Table 4.4: Mean Asset Demands
Annual Sample (1890 - 1995)

State Variables: Constant ARy im (d—p) spry
y=1,v=1,p=0.92
Stock  Total Demand 188.44 187.46 189.20 199.43  201.97
Hedging Demand 0.00 0.00 0.00 0.00 0.00
Bond  Total Demand 127.57 146.72 155.55 155.29  231.73
Hedging Demand 0.00 0.00 0.00 0.00 0.00
Cash  Total Demand -216.01  -234.18 -244.75 -254.72 -333.70
Hedging Demand 0.00 0.00 0.00 0.00 0.00
y=2,¥=1,p=0.92
Stock  Total Demand 98.66 100.81 101.80 132.29 132.47
Hedging Demand 0.00 2.54 3.02 28.13 27.15
Bond  Total Demand 70.78 89.58  95.75 89.71 53.49
Hedging Demand 0.00 9.12 1247 6.58  -64.28
Cash  Total Demand -69.44 -90.39 -97.556 -122.00 -85.96
Hedging Demand 0.00 -11.66 -15.49  -34.71 37.13
y=51Y=1p=0.92
Stock  Total Demand 44.79 52.42  52.30 74.29 81.38
Hedging Demand 0.00 7.66 7.79 27.30 34.05
Bond  Total Demand 36.71 53.74  63.75 64.28  -18.87
Hedging Demand 0.00 13.04  23.82 24.44  -68.29
Cash  Total Demand 18.50 -6.16 -16.05  -38.57 37.49
Hedging Demand 0.00 -20.70 -31.61 -51.74 34.24
v=20,%=1,p=0.92
Stock  Total Demand 17.86 29.22 2793 35.99 40.85
Hedging Demand 0.00 11.22  10.54 17.59 22.52
Bond  Total Demand 19.67 35.62 48.30 46.95 15.60
Hedging Demand 0.00 14.80  30.06 28.75 0.40
Cash Total Demand 62.47 35.15  23.77 17.06 43.55
Hedging Demand 0.00 -26.02 -40.60 -46.34 -22.92
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Table 4.5: Mean Asset Demands
Quarterly Sample (1952Q2 - 1997Q4)

State Variables: Constant ARy im (d—p) spry
y=1,4=1,p=0.92"/4
Stock  Total Demand 272.65 285.19 289.75 301.76 302.41
Hedging Demand 0.00 0.00 0.00 0.00 0.00
Bond  Total Demand 42.80 15.90 8.20 2.88 6.54
Hedging Demand 0.00 0.00 0.00 0.00 0.00
Cash Total Demand -215.45  -201.09 -197.95 -204.64 -208.95
Hedging Demand 0.00 0.00 0.00 0.00 0.00
v=2,4=1,p=092/4
Stock  Total Demand 136.07 138.76 139.35 313.75  241.40
Hedging Demand 0.00 -3.63 -5.14 163.32 90.64
Bond  Total Demand 16.28 -36.69 -68.17 -415.78 -465.80
Hedging Demand 0.00 -39.75 -67.64 -412.63 -464.46
Cash  Total Demand -52.36 -2.07 28.82 202.03 324.40
Hedging Demand 0.00 43.37 7279  249.31 373.82
y=51=1,p=092Y/4
Stock  Total Demand 54.13 53.07 50.50 578.45  566.02
Hedging Demand 0.00 -3.63 -6.84 51886  506.30
Bond  Total Demand 0.38 -30.52 -30.40 -677.15 -1090.92
Hedging Demand 0.00 -25.87 -24.64 -670.39 -1084.90
Cash Total Demand 45.49 77.45 79.90 198.69 624.89
Hedging Demand 0.00 29.51 31.48 151.53 578.60
v =201 =1,p=0.92"/4
Stock  Total Demand 13.16 11.49 9.34 358.21 502.51
Hedging Demand 0.00 -2.37 442 344.09  488.00
Bond  Total Demand -7.58 -17.53 7.91 -369.26 -799.10
Hedging Demand 0.00 -9.02 16.28 -360.74 -789.46
Cash Total Demand 94.42 106.03 82.75 111.05 396.59
Hedging Demand 0.00 11.40 -11.86 16.66  301.45
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sion, but we have also computed portfolio allocations for a continuum of
values of risk aversion; Figure 4.3 plots these allocations and their myopic
component using the annual VAR with all state variables included. In this
figure the horizontal axis shows risk tolerance 1/ rather than risk aversion
v, both in order to display the behavior of highly conservative investors
more compactly, and because myopic portfolio demands are linear in risk
tolerance.

Tables 4.4 and 4.5 enable us to analyze two effects on the level of port-
folio demands. By comparing numbers within any column, we can study
how total asset allocation and intertemporal hedging demand vary with risk
aversion. By comparing numbers within any row, we can examine the in-
cremental effects of the state variables on asset allocation. Here we explore
the first topic and leave the second for the next section. To simplify the
discussion we focus only on the allocations implied by the full VAR, shown
in the right-hand column of the table.

The first set of numbers in Tables 4.4 and 4.5 reports the mean portfolio
allocation to stocks, bonds and bills of a logarithmic investor. For this
investor, optimal asset allocation is myopic and depends only on the inverse
of the variance-covariance matrix of unexpected excess returns and the mean
excess return on stocks and bonds. This myopic allocation is long in stocks
and bonds in both the annual dataset and the quarterly dataset. However,
the ratio of stocks to bonds is close to one in the annual dataset and is
about 50 in the quarterly dataset. The preference for stocks in the quarterly
dataset is primarily due to the estimated large positive correlation between
unexpected excess returns on stocks and bonds in the quarterly dataset.
This shifts the optimal myopic allocation towards stocks—the asset with the
largest Sharpe ratio. In the annual dataset the correlation between excess
bond and stock returns is very low, implying that the optimal portfolio
allocation to one asset is essentially independent of the optimal allocation
to the other.

Conservative investors, with risk aversion v > 1, have an intertemporal
hedging demand for stocks. This demand is most easily understood by
looking at Figure 4.3, which is based on the annual dataset. In Figure
4.3, the total demand for stocks is a nonlinear, hump-shaped function of
risk tolerance 1/, while the myopic portfolio demand is, as always, a linear
function of 1/v. Moreover, total stock demand is always larger than myopic
portfolio demand for all 1/4 < 1. This implies that intertemporal hedging
demand must be a positive, nonlinear function of 1/v. We can verify this
by looking at the hedging demands reported in Tables 4.4 and 4.5. In both
datasets, the hedging demand for stocks is always positive and exhibits a
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hump-shaped pattern as a function of 1/. These patterns reflect the mean-
reversion of stock returns illustrated in Figure 4.2, which is captured in our
VAR model by the predictability of stock returns from the dividend-price
ratio.

The hedging demand for stock is particularly large in the quarterly
dataset (Table 4.5). In fact, in that dataset the hump-shaped hedging
demand dominates the linear myopic demand so that total stock demand ac-
tually rises with risk aversion for intermediate levels of risk aversion. These
results contrast with those of Campbell and Viceira (1999), which are closer
to the results reported here for long-term annual data. The main reason for
this contrast is that Campbell and Viceira (1999) made an error in estimat-
ing their model, understating the predictability of postwar quarterly stock
returns and the absolute value of the correlation between innovations to
stock returns and dividend yields. This error is explained in Campbell and
Viceira (2000), which reports complete corrected results. In addition, the
availability of nominal bonds—which are positively correlated with stocks
in the quarterly dataset—tends to strengthen hedging demands by allowing
investors to offset their equity risks with short positions in bonds.

Intertemporal hedging demands are just as striking for nominal bonds.
Table 4.4 shows that the portfolio hedging demand for bonds is negative
and exhibits a U-shaped pattern across coefficients of relative risk aversion
that eventually reverts to zero. Of course, this shape is also reflected in
the total demand for nominal bonds, which is plotted in Figure 4.2. This
pattern can be explained by the mean-aversion of bond returns illustrated
in Figure 4.2. At a deeper level, it results from the effect of the yield
spread on intertemporal hedging demand. We defer this discussion until the
next section, where we analyze the effects of individual state variables on
portfolio demands.

We have shown allocation results only for the case v = 1. We have
already noted that optimal portfolio demands do not depend on the elasticity
of intertemporal substitution except through the loglinearization parameter
p- Results not reported here for the power utility case show that this indirect
effect is quantitatively insignificant. The allocations for power utility are
almost indistinguishable from those in Tables 4.4 and 4.5.

We can also use our model to decompose the variability of asset demands.
We can write the optimal portfolio rule as

i = agy + aZ, (4.20)

where ¢ denotes stocks or bonds, m denotes myopic demand, and h denotes
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hedging demand. Thus,
Var (ajt) = Var («oj}) + Var (aﬁ) + 2 Cov (a;?, aﬁ) . (4.21)

We have calculated this variance decomposition for the case v = 5 and
1) = 1. The hedging component explains at most 23% of the total variation
in portfolio demand for both stocks and bonds in the annual dataset, and
14% in the quarterly dataset. Thus hedging portfolio demand is much more
stable than total portfolio demand. Kim and Omberg (1996) and Campbell
and Viceira (1999) give an intuitive explanation for this result, showing
that hedging demand can change sign only in extreme circumstances where
investors have replaced their normal long positions with short positions in
risky assets. To a first approximation, intertemporal hedging shifts the
intercept of risky asset demand rather than the slope with respect to state
variables; put another way, long-term investors should “market-time” just
as aggressively as short-term investors.

Which state variables matter?

The analysis so far has focused on the shape of asset demands and their
hedging components. It is equally important to understand the effects of
various state variables on the level and variability of asset demands. To
analyze the level effects of state variables, we can compare average portfolio
demands across rows in Tables 4.4 and 4.5.

Table 4.4 shows that there are important changes in the magnitude of
hedging demands as we consider new state variables in the investor infor-
mation set. In the case of stocks, hedging demand is very small when only
lagged Treasury bill rates (either real or nominal) and excess returns on
bonds and stocks are included in the VAR. It shoots up dramatically when
the dividend-price ratio is introduced into the VAR as a regressor. The
inclusion of the yield spread has mixed effects in the annual dataset, and
negative effects in the quarterly dataset.

The correlation structure shown in Table 4.4 helps explain these results.
In the full annual VAR system, there is a strong negative correlation between
unexpected excess returns on stocks and shocks to the dividend-price ratio,
while the magnitude of all other correlations in the table is much smaller.
These correlations are not sensitive to the inclusion or exclusion of state
variables in the VAR. The presence of the dividend-price ratio in the investor
information set increases the hedging demand for stocks because negative
shocks to the dividend-price ratio, which drive down expected returns on
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stocks, tend to coincide with positive realized excess returns on stocks. This
negative correlation is even stronger in the quarterly dataset, which makes
the pattern for hedging demands more pronounced in this dataset.

In the case of bonds, the yield spread has a tremendous negative im-
pact on hedging demand. In fact, it changes the sign of hedging demand
from positive to negative. Table 4.4 again explains this result. In both
datasets, the yield spread is the most important forecasting variable for
bond returns, and its innovations are positively correlated with excess bond
returns. This correlation produces a negative hedging demand for bonds,
since negative shocks to expected future bond returns tend to coincide with
negative current bond returns. The magnitude of the correlation is larger
in the quarterly dataset, which is why hedging demand is more negative in
this dataset.”

Hedging demands can also be understood by reference to Figure 4.2,
which shows that stock returns are mean-reverting, while nominal bond re-
turns are mean-averting. A univariate representation of excess stock returns
will have a negative correlation between expected and unexpected excess re-
turns on stocks, while a univariate representation of excess bond returns
will have a positive correlation between expected and unexpected excess
returns on bonds. This makes stocks an attractive asset for conservative
investors who seek to hedge intertemporally, while it makes nominal bonds
a fundamentally unattractive asset.

We can also analyze the importance of each state variable for the vari-
ability of asset demands. In the case v =5 and ¥ = 1, the dividend-price
ratio explains 80% of the variance of total demand for stocks in the annual
sample, and 91% in the quarterly sample. The dividend-price ratio plays
a much less important role in explaining the variability of the portfolio de-
mand for bonds, which is driven primarily by the lagged excess stock return
and the yield spread.

In summary, our results indicate that the most important state variable
determining the mean and volatility of stock demand is the dividend yield,
while the yield spread is more important for bonds. The dividend yield
generates a large positive intertemporal hedging demand for stocks, while

5The positive correlation of bond and stock returns in the quarterly dataset also means
that positive hedging demand for stocks tends to produce negative hedging demand for
bonds in that dataset. Note also that shocks to nominal bill yields are highly negatively
correlated with unexpected excess bond returns in both samples, but the coefficient on
the nominal bill rate in the excess bond return equation in the VAR is small and not
statistically significant. This lack of predictive power means that the inclusion of the
nominal bill rate has a relatively small effect on the hedging demand for bonds.
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the yield spread generates a large negative intertemporal hedging demand
for bonds. Ait-Sahalia and Brandt (2000) also find that these variables are
important determinants of optimal portfolio choice, though they find that
the role of the dividend yield weakens if the late 1990’s are included in the
sample.

4.2.4 Strategic asset allocation with inflation-indexed bonds

Our results so far imply that the intertemporal hedging demand for long-
term bonds is negative. This contrasts with the conventional investment
advice that conservative long-term investors should hold bonds to obtain a
stable stream of income, disregarding short-run fluctuations in capital value.
There are two possible reasons for the discrepancy between our results and
conventional wisdom. First, the conventional wisdom disregards the dis-
tinction between nominal and inflation-indexed bonds. In the presence of
significant inflation risk, long-term nominal bonds are not suitable assets
for conservative long-term investors as we showed in Chapter 3. Second,
the model we use in this chapter has a general dynamic structure in which
either stocks or bonds might be good hedges for predictable variation in
stock and bond returns. Conventional investment advice may be based on
the presumption that bonds are the best hedges for predictable variation in
returns on all risky assets; the model of Chapter 3 explicitly assumes this.

To determine which of these explanations is correct, we now extend our
model to include an inflation-indexed perpetuity in the menu of available
assets. This requires us to construct hypothetical real bond returns, because
indexed bonds have only been recently issued by the US Treasury and thus
data on indexed bonds are very limited. The VAR framework is well suited
for this purpose, provided that we make the assumption that expected real
returns on real bonds of all maturities and the expected real return on short-
term nominal bills differ only by a constant. This amounts to assuming that
the inflation risk premium on nominal bills is constant. We now briefly
describe the construction procedure, which is adapted from the work of
Campbell and Shiller (1996) and described in detail in the Appendix.

We first use the estimates of the coefficient matrices in the VAR to con-
struct returns on hypothetical real perpetuities according to the procedure
outlined in the Appendix. The procedure assumes a zero inflation risk pre-
mium. Asnoted in Campbell and Shiller (1996), if the inflation risk premium
is not zero but constant, the procedure will miss the average level of the yield
curve, but will still capture the dynamics of the curve. This is important,
because intertemporal hedging demand depends sensitively on the dynamics
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of asset returns. With the correct dynamics in hand, we adjust the mean
return by setting the Sharpe ratio of the real consol bond to the Sharpe
ratio of nominal bonds.” Finally, we include the imputed excess return on
real perpetuities in a new VAR system that includes both nominal bonds
and real consols.

Table 4.6 reports the resulting mean asset demands for values of v equal
to 1, 2, 5, 20 and 2000 and v = 1. We include the case v = 2000 because
we want to study asset demand for infinitely risk averse investors, which
we proxy using this large value of v. We also report mean asset allocations
under constant investment opportunities. To simplify the discussion and to
save space, we include results only for the annual dataset. Figure 8 plots
the allocations implied by the full VAR for a continuum of values of ~.

We start by looking at the optimal portfolio of a myopic logarithmic
investor. This investor should hold a short position in the inflation-indexed
perpetuity, despite the fact that the mean excess return on this asset is
positive by construction. This allocation is the result of a large, positive
correlation between excess returns on stocks and excess returns on the real
perpetuity (shown in Appendix D), which makes it optimal for a logarithmic
investor to short the real perpetuity to increase her allocation to stocks, the
asset with the largest Sharpe ratio.

We can learn about the myopic allocations of non-logarithmic investors
by looking at the allocations under constant investment opportunities shown
in the “constant” column. Investors with v > 1 have a myopic demand for
real perpetuities that is not proportional to the optimal allocation of the
logarithmic investor. In fact, it even changes sign and becomes positive for
moderately risk averse investors. This is driven by the fact that the short-
term bill is risky in real terms, so the portfolio with the smallest short-term
risk is a combination, with roughly equal positive weights, of the short-term
bill and the real perpetuity.

The “spread” column in Table 4.6 shows total portfolio demands with
time-varying investment opportunities. The total portfolio demand for the
real consol bond is increasing in risk aversion, approaching 100% of the
portfolio as the investor becomes infinitely conservative. By contrast, the
total portfolio demand for stocks, the nominal bill and the nominal bond
are decreasing in v, approaching 0% as the investor becomes infinitely con-
servative. Thus inflation-indexed bonds drive out cash from the portfolios

"We have also considered setting the Sharpe ratio of the real consol bond equal to
zero and setting it equal to the Sharpe ratio of stocks. These choices affect myopic asset
demands, but do not have noticeable effects on intertemporal hedging demands. Results
are available from the authors upon request.
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Table 4.6: Mean Asset Demands with Hypothetical Real Bonds
State Variables: Constant spry

y=1,¢v=1,p=0.92

Stocks 188.49 221.00
Real Consol Bond -76.96  -103.51
Nominal Bond 144.71 290.94
Cash -156.25  -308.43

y=2,9=1,p=0.92

Stocks 94.05 134.25
Real Consol Bond -11.63 -21.99
Nominal Bond 70.13 73.28
Cash -52.54 -85.54

y=51Y=1p=0.92

Stocks 37.38 70.75
Real Consol Bond 27.57 46.71
Nominal Bond 25.38 -36.43
Cash 9.68 18.97

v =20,1=1,p=0.92

Stocks 9.04 21.95
Real Consol Bond 47.17 84.40
Nominal Bond 3.00 -20.03
Cash 40.79 13.68

v =2000,9% =1,p=0.92

Stocks -0.31 0.09
Real Consol Bond 53.63 96.92
Nominal Bond -4.38 6.61
Cash 51.05 -3.62
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of conservative investors. This is a generalization of the result of Chapter
3 to a world in which both interest rates and expected excess returns are
time-varying.®

4.3 Conclusion

In this chapter we have explored optimal investment strategies when both
riskless interest rates and risk premia change over time. In this situation a
long-term investor with constant risk aversion should both take advantage of
and hedge against variations in investment opportunities. In the presence
of mean-reverting stock returns, the strategic equity allocation is higher on
average than the optimal myopic equity allocation, and it responds slightly
more strongly to changes in the equity premium; thus it involves an element
of market timing.

It is interesting to relate these results to recent discussions of stock mar-
ket risk. Equities have traditionally been regarded as risky assets. They
may be attractive because of their high average returns, but these returns
represent compensation for risk; thus equities should be treated with caution
by all but the most aggressive investors. In recent years, however, several
authors have argued that equities are actually relatively safe assets for in-
vestors who are able to hold for the long term. We have already quoted
Jeremy Siegel (1994) on this point; a more extreme version of this revision-
ist view is promoted by James Glassman and Kevin Hassett, who argue in
their recent book Dow 36,000 (1999) that stocks are just as safe as bonds
or Treasury bills.

The revisionist view that stocks are safe assets is based on evidence that
excess stock returns are less volatile when they are measured over long hold-
ing periods. Mathematically, such a reduction in stock market risk at long
horizons can only be due to mean-reversion in excess stock returns, which
is equivalent to time-variation in the equity premium. Yet revisionist in-
vestment advice typically ignores the implications of a time-varying equity
premium. Siegel (1994) recommends an aggressive buy-and-hold strategy,
like the horizontal line in Figure 4.1 but shifted upwards to reflect the re-
duced risk of stocks for long-term investors. The optimal policy is instead

8Note that the allocation to the real consol bond for an investor with an extremely large
coefficient of relative risk aversion does not equal 100% exactly. This is due primarily to the
fact that the investor we consider in Table 5 has unit, not zero, elasticity of intertemporal
substitution. There is also a small effect caused by the fact that the VAR system in Table
5 does not exactly capture the information set we used to construct the long-term real
bond yield.
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the sloped line marked “Strategic investor” in Figure 4.1.

The difference between the optimal strategy and the strategy recom-
mended by Siegel is particularly dramatic at times like the present, when
recent stock returns have been spectacular. At such a time, the optimal eq-
uity allocation may be no higher—it may even be lower—than the allocation
implied by a traditional short-term portfolio analysis. To put it another
way, investors who are attracted to the stock market by the prospect of high
returns combined with low long-term risk are trying to have their cake and
eat it too. If expected stock returns are constant over time, then one can
hope to earn high stock returns in the future similar to the high returns of
the past; but in this case stocks are much riskier than bonds in the long
term, just as they are in the short term. If instead stocks mean-revert, then
they are relatively safe assets for long-term investors; but in this case future
returns are likely to be meagre as mean-reversion unwinds the spectacular
stock market runup of the past decade.

It is important to keep in mind two limitations of our analysis in this
chapter. First, we ignore portfolio constraints that might prevent investors
from short-selling or from borrowing to invest in risky assets. The Siegel
strategy of buying and holding stocks might be much closer to optimal for an
aggressive investor who cannot borrow to leverage a stock market position,
and who therefore normally holds the maximum 100% weight in equities.

Second, we have studied a partial equilibrium model. We have solved
the microeconomic problem of an investor facing exogenous asset returns,
but we do not show how these asset returns could be consistent with general
equilibrium. The difficulty is particularly severe in this chapter, since we
find that all investors should change their portfolio allocations in the same
direction as state variables change, regardless of their preferences. That is,
all investors should buy and sell assets at the same time. This cannot be
consistent with a general equilibrium model that makes realistic assumptions
about asset supplies.

One possible resolution of this difficulty is that the representative in-
vestor has different preferences from those assumed here, perhaps the habit-
formation preferences of Campbell and Cochrane (1999) that can generate
shifts in risk aversion and hence changing risk premia with a constant riskless
interest rate. Under this interpretation the results of this chapter should
be used only by investors with constant risk aversion, who cannot be typical
of the market as a whole.
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Chapter 5

Strategic Asset Allocation in
Continuous Time

In the first part of this book we have developed a discrete-time model that
can be used to analyze optimal long-term portfolio choice when the con-
ditions for myopic portfolio choice fail. In particular, we have asked how
long-term investors should react to time variation in interest rates and risk
premia. This chapter extends the previous analysis in two ways.

First, we show how to approach similar problems in a continuous-time
framework. The use of continuous-time mathematics to analyze dynamic
portfolio choice has a long tradition that goes back at least to the seminal
work by Robert Merton (1969, 1971, 1973). Duffie (1996) and Merton (1990)
provide a general treatment of portfolio choice in continuous time. We show
that, when exact analytical solutions are not available, we can still obtain
approximate analytical solutions of the same nature as the ones we have
presented in previous chapters. Furthermore, when investors’ preferences are
characterized by a recursive utility function, we can obtain exact analytical
solutions for investors with unit elasticity of intertemporal substitution.

Second, we explore the investment implications of time-varying risk. A
continuous-time framework is convenient for this purpose because continuous-
time models of stochastic volatility are parsimonious and readily restrict
volatility to be positive. Our analysis of this problem closely follows Chacko
and Viceira (1999). We continue to assume that investors have financial
wealth but no uninsurable labor income risk.

This chapter is written at a higher technical level than other chapters in
the book. Readers who are unfamiliar with continuous-time mathematics—
in particular, 1t6’s Lemma—should consult a primer such as Neftci (1996)
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or should skip this chapter altogether.

The organization of the chapter is as follows. Section 5.1 develops
the dynamic programming approach to optimal consumption and portfolio
choice in continuous time, as introduced originally by Merton. Section 5.1.1
explains the Bellman optimality principle in continuous time, section 5.1.2
introduces an example that is a continuous-time equivalent of the real term-
structure model in Chapter 3, and section 5.1.3 derives a continuous-time
loglinear approximate solution to the model, a continuous-time equivalent
of the solution derived in Chapter 3.

Section 5.2 explains the Cox-Huang solution method, the leading continuous-
time alternative to the dynamic programming approach. Section 5.2.1 ex-
plains the role of the stochastic discount factor (SDF) in continuous-time
models, section 5.2.2 shows how the properties of the SDF help one to
solve dynamic portfolio choice problems, and section 5.2.3 revisits the term-
structure example of section 5.1.2.

For simplicity, both sections 5.1 and 5.2 work with time-separable power
utility. Section 5.3 presents recursive utility, the continuous-time equivalent
of the Epstein-Zin preferences introduced in Chapter 2. Finally, section 5.4
applies the methods of this chapter to solve a long-term portfolio choice
problem with time-varying stock market volatility.

5.1 The Dynamic Programming Approach

5.1.1 The Bellman Optimality Principle

We start by deriving the Bellman equation for optimality in a simple set-
ting. The Bellman optimality principle is a useful tool for solving dynamic
portfolio problems, because it allows the transformation of a dynamic op-
timization problem into a differential equation, for which several solution
methods are available.

For notational convenience, we assume there are only two assets available
to the investor, a risky asset with instantaneous total return dP;/P,! and
an instantaneously riskless asset with return dB;/B;. There is also a single
state variable S; driving the dynamics of the investment opportunity set.
It is conceptually straightforward to extend the analysis to multiple assets
and state variables.

If the risky asset does not pay dividends, P; is simply the price of the asset. If it does
pay dividends, P; represents an index whose instantaneous rate of change dP;/P; equals
the instantaneous total return on the asset.
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We assume that both returns and the state variable follow diffusion pro-
cesses:

dP,

?t = pup(S,t)dt+op(S,t)dZp,, (5.1)
t

dB,

dS; = g (S,t)dt+ o (S,t)dZs,, (5.3)

with dZpdZs: = ppg (S,t) dt. Note that the drifts, volatilities, and corre-
lations of these processes may be functions of the state variable and time.
In the following equations, however, we often omit this dependence, writing
for example pp instead of up (S,t); this simpler notation is less careful but
more readable.

Given time-separable preferences defined over consumption, and initial
wealth Wy > 0, we can formulate the optimal portfolio and consumption
problem for a long-term investor as

C,a

max Eo [ / U(C,1) dt] (5.4)
0
subject to the continuous-time intertemporal budget constraint
dW =[(a(pp —7r)+7r)W = Cldt + aWopdZp (5.5)

and the constraints Wy > 0, Wy > 0, and Cy > 0. Here o denotes the
fraction of wealth invested in the risky asset, and C' denotes consumption.

Let J(W,S,t) denote the maximized utility function, or value function,
of this problem. Merton (1971, 1973) shows that the Bellman principle
implies:

0 = max {U (C,t) + %Et [dJ (W, S, m} . (5.6)

At the optimum, the investor has perfectly traded off the value of present
and future consumption. Consumption today is achieved at the expense of
current resources that otherwise could increase consumption in the future.
The investor chooses a level of current consumption whose utility value ex-
actly offsets the expected utility cost of lost future consumption.

Under suitable regularity conditions (Merton 1990), 1t6’s Lemma implies
that

dJ (W,8,t) = JwdW + JsdS + (8.J/8t)dt
1 1
5 Iww (dW)? + JygdWdS + 57ss (dS)?. (5.7)
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Here we use subscripts to denote partial derivatives, except that we write out
the partial time derivative of J explicitly as 0.J/0t to avoid any possibility
of confusion with the value of the function J at time ¢. Using the stochastic
differential equations for dS and dW given in (5.3) and (5.5), and the rules
of stochastic calculus, we can easily compute an expression for the expected
instantaneous change in the value function. Substitution of the expression
for E¢[dJ(W, S, t)]/dt into (5.6) gives an equation that depends on C, «, and
the value function:

0 = macx{U(C’,t) + Jw [(a(up —71)+7r)W = C| + Jsug + 0J/0t

(07
1 1
+§waa2W2U%3 + JwsaWopospps + §J550%} . (5.8)

Merton (1969) notes that this equation must verify the boundary condi-
tion

lim Eo[J (W, 8,1)] = 0. (5.9)

This is a condition for the convergence of the integral in (5.4). It is a
transversality condition ensuring that the value function is bounded in the
limit, i.e., that there is no investment strategy that allows the investor to
achieve infinite utility.

We can compute the first-order conditions of the problem by taking
derivatives of (5.8) with respect to C and «. We obtain a pair of expressions
for consumption and portfolio choice as a function of wealth:

Uo = Jw=C=Us" (Jw), (5.10)
a = 1 Mp_r
T —TwwW/dw \ 0%
Jws [(0s
e (2= ) 11
TJwwW <O_PPPS> (5 )

Here consumption and the derivatives of the value function all depend on
the variables W, S, and ¢, while the riskless rate and the moments of the
risky asset return all depend on S and t. For simplicity these dependences
are omitted from the notation, but they should not be forgotten.

Equation (5.10) determines the optimal consumption policy. It is known
as the “envelope condition,” because it implies that at the optimum an extra
unit of current consumption is as valuable to the investors as an extra unit
of wealth to finance future consumption.

Equation (5.11) determines the optimal portfolio allocation to the risky
asset. It is the continuous-time counterpart of (3.14). The first term of
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this equation is the familiar myopic portfolio rule: The optimal allocation
to the risky asset is proportional to the asset’s risk premium, and inversely
proportional to its volatility and the relative risk aversion of the investor’s
value function. The second term is the intertemporal hedging component. It
is non-zero as long as investment opportunities are time-varying (og > 0),
they are correlated with instantaneous realized returns on the risky asset
(pps # 0), and they affect the marginal utility of wealth (Jyg # 0).

Equations (5.10) and (5.11) are not a complete solution to the model
because they depend on the value function, which is still unknown. How-
ever, substitution of these expressions for optimal consumption and portfolio
choice back into the Bellman equation (5.8) delivers a second-order partial
differential equation (PDE) for the value function J(W, S,t). Once we have
solved this equation for the value function, we can obtain the optimal poli-
cies by substituting the value function into the first-order conditions for
consumption and portfolio choice.

Unfortunately, it is not generally straightforward to find an analytical
solution for the PDE that gives the value function. This type of equation is
solved analytically using the method of undetermined coefficients. That is,
one makes a guess about the functional form of the solution, and shows that
it verifies the partial differential equation for some values of the parameters
defining the functional guess. However, finding such a function is not always
easy. In some cases, it is possible to transform the PDE into an ordinary
differential equation (ODE), and there are handbooks such as Polyanin and
Zaitsev (1995) that help identify ordinary differential equations with known
exact solutions. But if no exact solution is known, it is necessary to resort
to numerical algorithms such as those explained in Judd (1998) or Rogers
and Talay (1997).

The special cases with known analytical solutions can be listed quite
briefly. Merton (1969, 1971, 1973) showed that equation (5.6) has an exact
analytical solution if investors’ utility of consumption is logarithmic, or if
utility is power and investment opportunities are constant. In both cases,
as we noted in Chapter 2, the intertemporal asset allocation problem is
essentially equivalent to a one-period problem, and optimal portfolio choice
is myopic.

More recently, Kim and Omberg (1996) and Liu (1998) have shown that
we can solve the problem exactly provided that markets are complete—
which in our simplified model, with only one state variable, requires perfect
correlation between the state variable and the stock return—and investors
maximize the utility of terminal wealth at some fixed horizon. Using the
method of Cox and Huang (1989), Wachter (1999) has extended this solution
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to the case of investors who maximize utility over consumption each period.
Schroder and Skiadas (1997) and Fisher and Gilles (1998) also explore the
implications of complete markets for optimal portfolio choice when investors
have recursive utility. Chacko and Viceira (1999) show that we can obtain
an exact solution to the continuous-time problem without assuming that
markets are complete, provided that investors’ elasticity of intertemporal
substitution is one.

In all other cases, there are no known exact analytical solutions. How-
ever, we can resort to an approximate analytical solution method of the
sort we introduced in previous chapters for discrete-time consumption and
portfolio choice problems. We illustrate this approach in the next section
by studying an example, the continuous-time counterpart of the model with
time-varying real interest rates introduced in Chapter 3.

5.1.2 Consumption and portfolio choice with time-varying
interest rates and power utility.

The derivation of the Bellman equation shown in the previous section is
general, except for the limited number of assets and state variables. To
apply this solution method to a particular problem we need to be more
specific about the direct utility function U(.) and the investment opportu-
nity set. In this section we solve a simple example, where investors have
time-separable power utility over consumption with constant relative risk
aversion vy, U(Cy) = C’t1 “7/(1 =), and where time-variation in investment
opportunities is created by a time-varying real interest rate, so that Sy = r;.
To keep our notation as simple as possible, we also assume that the investor
can choose only between an instantaneous short-term real bond paying rdt
and a long-term real bond.

We assume that the real interest rate follows an Ornstein-Uhlenbeck
process as in Vasicek (1977):

dry = Ky (0 — 1) dt + 0,dZ,, (5.12)

where k, € (0,1) and 6, > 0. Let P(r;,T —t) denote the price of a real
zero-coupon bond with T'—¢ periods to maturity. Vasicek (1977) shows that
no-arbitrage implies the following dynamics for bond returns:

dP (T‘t, T— t)

P(re,T —1) [re + A0 (T = t)] dt — b(T — t) oy dZy, (5.13)

where A\ determines the risk premium on the bond and b(T —t) = x1(1 —
exp{—r,(T' —t)}) = —P,/P. Thus real bonds in this model have a constant
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expected excess return equal to Ab(T — t) and a constant instantaneous
return volatility equal to b(T —t)o,. There is only one source of uncertainty
in this model, and bond returns are perfectly negatively correlated with the
short-term real interest rate. This is the continuous-time counterpart of the
real-interest-rate model in Chapter 3.

The investor’s dynamic portfolio and consumption problem can now be
written as

o] Ctl—’Y
Hcl’icx Eo /0 e Pt mdt (5.14)
subject to
dWi = [aXb (T —t) + riWy — Cyl dt — aWib (T — t) opdZ,. (5.15)

To find the optimal consumption and portfolio policies for this model we
follow the steps described in Section (5.1.1). The Bellman equation for this
problem is

1—y
0 = max {e—ﬂt 10__7 + Jw (W + W — C) + Jyky (6r — 1) + 001

1 1
+§JWWa2W2b2 2 JwraWbo? + §Jrrof} : (5.16)

where we have set b(T — t) = b for brevity.
From this Bellman equation, the first-order conditions for optimal con-
sumption and portfolio choice are:

c = (eﬁt JW) ) (5.17)

W (L N Jwe )L
N —JWWW/JW bG% JWWW b‘

Substitution of these conditions into equation (5.16) gives a second-order
ordinary differential equation (ODE) for the value function J(W,r,t) shown
in the mathematical appendix. To solve this equation we guess that the
value function takes the form

(5.18)

w7
T(Wor,t) = e P H (r)? T (5.19)

where H(r) is a function only of the instantaneous interest rate. This guess
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implies, after some simplifications, another ODE for the function H(r):

_ 0 g A B Ver oL H,
0= 1—7H +<27072~ 1—v+r>+<1—v(0’" ") A><H>

Equation (5.20) is a non-homogeneous ODE, whose associated homogeneous
equation belongs to the degenerate hypergeometric equation class. This
equation has an exact solution given in Polyanin and Zaitsev (1995). Unfor-
tunately this solution is a complicated expression involving gamma functions
which is extremely hard to interpret.

5.1.3 An approximate analytical solution

We now show that it is possible to find an approximate analytical solution
to the problem. The solution is based on a log-linear expansion of the
consumption-wealth ratio around its unconditional mean. This is exactly
the same type of approximation that we used in Chapters 3 and 4, but
instead of using it to linearize the intertemporal budget constraint, we use
it here to solve the Bellman equation.

To understand the approach, note that the envelope condition (5.17)
implies
% —exp{e,—wy=H(r)) ", (5.21)

t

where ¢; — w; = log (Cy/W;). Therefore, we can approximate H(r;) ! as

H (re) ™" & ho + ha (er — wy) (5.22)

where hy = exp{c—w}[l — (c—w)], h1 = exp{c—w}, and (c—w) =
Elc: — wy].  Substituting (5.22) for H(r;)~! in the first term of (5.20), it
is easy to see that the resulting ODE has a solution of the form H(r;) =
exp {Co + C17¢}. This implies that the log consumption-wealth ratio is lin-
ear in the riskless real interest rate: ¢; — wy = —C1ry — Ch.

Our approach replaces the term that causes the non-linear ODE (5.20)
to be non-solvable analytically with a log-linear approximation. Thus we
transform the equation into another ODE with a known analytical solution.
If the log-linear approximation is accurate, the exact analytical solution to
the approximate ODE will also verify the original ODE subject to some
approximation error, and can be regarded as an approximate analytical so-
lution to the original ODE. We will also show that the approximation error
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is zero for the special cases of log utility and constant investment opportu-
nities.

The approximate ODE leads to two algebraic equations for C7 and Cj
given in the Appendix. The first equation is linear in the coefficient (i,

j— . 5' 23

The second equation involves both coefficients, but it is linear in Cy given
C1. Its solution is a function of all the parameters in the model.
The approximate solution implies the value function

1—y

W,
J (W, r,t) = exp {—Bt +~vCo + yC174} . L ol (5.24)
and the optimal policies

ct —wy = —Cy + 1—1 ! T (5.25)

t t — 0 v h]_ +I€T ts .

1 A 1 1

=2 4 (1-= . 5.26
R Al (R vy s N LEY

This is the continuous-time equivalent of the discrete-time approximate so-
lution given in Chapter 3. The optimal portfolio policy is a weighted average
of two terms, with weights given by the investor’s coefficient of relative risk
tolerance and one minus this coefficient. It is straightforward to show that
the solution is exact in the log utility case where v = 1. In this case,
Cy/W; = B and a = \/b(T —t)o2. This is the exact solution implied by

the Bellman equation (5.20) with v = 1.

5.2 The Cox-Huang Approach

Cox and Huang (1989) have suggested an alternative approach to intertem-
poral consumption and portfolio choice that takes advantage of the proper-
ties of the stochastic discount factor under complete markets. This approach
works by transforming dynamic problems into a static problem whose un-
known is optimally invested wealth rather than the value function. This
transformation delivers a differential equation for optimally invested wealth
that is often easier to solve than the Bellman equation for the value func-
tion. In this section we offer a “hands-on” explanation of how this approach
works. We start by describing the properties of the stochastic discount factor
in continuous time.
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5.2.1 The stochastic discount factor in continuous time

The stochastic discount factor in continuous time is defined as the process
M; such that for any security with price V; and instantaneous payoff X, we
have:

M
vtzEt{ X}, s>t (5.27)

Mt s
The stochastic discount factor is also known as the pricing kernel or state-
price density. An important property of the continuous-time stochastic dis-
count factor is that it is unique if markets are complete and there are no
opportunities for arbitrage in the economy.

If we are considering a security that does not pay dividends, we have
Xs = Vg, and (5.27) becomes

M;V; = Bt [Ms V4], (5.28)
which in turn implies that M;V; follows a martingale:
Et [d (M:V})] = 0. (5.29)

If the security pays an instantaneous dividend of D;dt each period, we have
Xs = Vs + Dgdt, and (5.27) becomes

Eq [d (M V;) + M, Dydt] = 0. (5.30)

We can still use equation (5.29) to analyze a security that pays dividends,
provided that we interpret V; as an index whose instantaneous rate of change
equals the total return on the security.

Given a process for the stochastic discount factor, we can price any
security in the market. Harrison and Kreps (1979) show that we can also
work the other way around, and find the stochastic discount factor that is
consistent with a set of observed equilibrium prices in the economy. For
example, suppose that the only securities in the market are security F,
whose total return follows the process (5.1), and an instantaneously riskless
asset given in (5.2). Further, assume that markets are complete, i.e., that the
vector of traded security prices perfectly spans the vector of state variables.

In our example, the complete-markets assumption means that innova-
tions to the state variable and innovations to the risky asset return must
be perfectly correlated so that there is only one source of uncertainty in
the model (i.e., dZpy = dZs;). In this case, the stochastic discount factor
follows a diffusion process with only one diffusion term:

dM,

i = ppr (S, t)dt + o (S, 1) dZpg. (5.31)
t

114



CHAPTER 5. STRATEGIC ASSET ALLOCATION IN CONTINUOUS
TIME

We can use the martingale property (5.29) to solve for u,,; and ojs as func-
tions of the drift and diffusion coefficients of security prices. Equation (5.29)
implies that E¢[d(MP;)] = 0 and E[d(M:B:)] = 0. That is, the drift terms
of d(MP;) and d(M;B;) must be equal to zero. From It6’s Lemma we have

d (Mtpt) = MP, (df)t + dM; + O'PO'Mdt) (532)
= MP[(pp+ py +opor)dt+ (op+ o) dZpy) .

Thus the martingale property E;[d(M;P;)] = 0 holds if and only if
MP+MM+UPUM=0. (533)
Similarly, for the instantaneously riskless bond we have

d(M;B,)) = M,B,(dB, + dM,) (5.34)
= MtBt [(T‘ + HM) dt + O'MdZP,t] s

and the martingale property requires
T+ ppr = 0. (5.35)

Equations (5.33) and (5.35) define a system of two linear equations with two
unknowns, whose unique solution is

wy (S,t) = —r(S,t), (5.36)
o (S,t) = —“P(i’;)(;?;(s’t). (5.37)

That is, the instantaneous expected return on the stochastic discount factor
is the negative of the instantaneous interest rate, and the diffusion term is the
negative of the price of risk (or Sharpe ratio of the risky asset). Note that if
markets are not complete, the innovations to the discount factor will depend
on both dZp; and dZg;, and it will not be possible to uniquely identify the
drift and diffusion terms of the process for the stochastic discount factor.
It is straightforward to extend this approach to any number of securities.
In this case, dP;/P; becomes a vector, and o p; a vector such that o p,ta},’t =
Y pt, where X p; is the instantaneous variance-covariance matrix of returns.

5.2.2 Using the stochastic discount factor to solve portfolio
and consumption problems

Transforming the dynamic problem into a static problem
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The Cox-Huang solution approach uses the properties of the stochastic
discount factor under complete markets to solve portfolio and consumption
problems. We have defined the optimal portfolio and consumption problem
for a long-term investor in Section 5.1.1 as

max Ho {/ U (C,t) dt] , (5.38)
e 0
subject to

dW =[(a(up —r)+r)W — C|dt + aWopdZp, (5.39)

and positive initial wealth Wy > 0. Note that by simply reordering terms
we can rewrite the intertemporal budget constraint as:

aw + Cdt

W =lapp+ (1 —a)r|dt + aocpdZp. (5.40)

This expression interprets the dynamic budget constraint (5.39) as the total
return on an asset whose price is W; and that has an instantaneous dividend
each period equal to optimal consumption C;. Under this interpretation,
optimally invested wealth W; must verify

M,
Wy =E / C,—d } 5.41
t t[t MtS ( )

That is, optimally invested wealth is the expected present value of opti-
mal future consumption discounted using the stochastic discount factor.
Optimally invested wealth at any time must be able to finance expected
consumption under the optimal consumption plan determined at t.

With this reinterpretation of the budget constraint, we can transform
the dynamic optimization problem (5.38)-(5.39) into the following problem:

max Eo [/ U (C,t) dt] (5.42)
0
subject to
Wo = Eo |:/0 Ctﬁgdt] , (5.43)

where we omit « from the argument of the max operator because we assume
that Wy and Cy in (5.43) denote optimally invested wealth and optimal
consumption respectively. Cox and Huang (1989) show that the solution
to this problem is equivalent to the solution to problem (5.38)-(5.39). At
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the same time, (5.42)-(5.43) is a static problem that we can solve using the
standard Lagrangian method.
The first-order conditions for the static problem (5.42)-(5.43) are

Uc (C)=tM; = C=Ug" (¢( M), (5.44)

where ¢ denotes the Lagrange multiplier, and (5.43)—that is, the budget
constraint must hold along the optimal path. Note that ¢ does not have a
time subscript; it is a constant determined at time 0. Substituting (5.44)
into (5.43) we have

o0 M,
Wo = Eo [/ UCTI (¢ M) —Ltat]. (5.45)
0 Mo
We can simplify this expression by defining a new variable
X, = (0M;) . (5.46)

This definition implies that M;/My = Xo/X;. It also implies the following
dynamics for X;:

X o _dMy (dMy?
X: M M;
= (—pp (S,t) + 03, (S, 8)) dt — o (S,t)dZpy,  (5.47)

where the first line follows from It6’s Lemma, and the second line follows
from (5.31), (5.36) and (5.37). Cox and Huang (1989) give an interesting
interpretation of the variable Xy, noting that it is the value of the “growth-
optimal portfolio.” We showed in Section 2.1.3 that this is the portfolio that
maximizes the log return on wealth, and it is the optimal portfolio for an
investor with log utility over terminal wealth.?

Substituting back into (5.45) and noting that (5.45) must hold at all
times, we obtain the following equality for optimally invested wealth:

o X,
W, = E [ / Uzt (X Ytds] (5.48)
t s

o0
= X, Fy U Uzt (X Xs_lds].
t

2This investor chooses a portfolio policy given by o = (up —r)/0% = oar/op. Substi-
tution of this rule into (5.5)—with Cy = 0—gives (5.47).
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Given the Markovian structure of the dynamics for X; and S; (see [5.3] and
[5.47]), this expectation will be some function F' of the current value of X.
If the process for X; depends on the state variable, it will be also a function
of the current value of S:

W, =F(X,5,t). (5.49)

This observation has important implications for the role of time-varying
expected returns, variances and covariances on portfolio choice. Note that
the process for X depends only on the instantaneous interest rate, —p; = 7,
and on the price of risk, —opr = (up —7)/0p, but it does not depend on the
expected return on the risky asset up or its instantaneous standard deviation
op in isolation. Thus, if both the instantaneous interest rate and the price
of risk are constant, optimally invested wealth will not depend on S, even
if up and op are functions of S individually. Optimal portfolio choice and
consumption will be also independent of the process for the state variable,
because they depend on the state variable only indirectly through optimally
invested wealth.

Nielsen and Vassalou (2000) show that this result holds generally, re-
gardless of the dimensions of the state vector and the vector of risky assets,
and regardless of whether markets are complete or not. They note that the
interest rate is the intercept of the instantaneous capital market line, and
the price of risk (or Sharpe ratio) is the slope. Their result implies that
the only time variation that matters for consumption and portfolio choice is
time-variation in the slope and intercept of the instantaneous capital market
line.

Solving for optimally invested wealth

We can use the martingale property (5.29) to solve for the function
F(X,S,t). The martingale property implies

E¢ [d (MyWy) + MyCydt] = By [d (Mo Fy) + MUG (X;7Y) dt] =0, (5.50)

where the second term on the right-hand side comes from the fact that
optimally invested wealth pays an instantaneous “dividend” equal to Cldt.
We now show that the expectation (5.50) implies a second-order partial
differential equation (PDE) for optimally invested wealth.

To compute the expectation (5.50), we need first to compute d(MF}).
By It6’s Lemma, we have that

d(M,F,) = F,dM, + M,dF, + dM,dF,. (5.51)
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We have already derived the dynamics for dM; in (5.51). We can obtain the
dynamics for dF' by using It6’s Lemma once again:

dF = FxdX + FsdS + OF /ot + %FXX (dX)? + %FSS (dS)? + FxgdXdsS,
(5.52)
where subindices denote partial derivatives—for example, Fs = 0F/0S—
with the exception that we write OF' /0t rather than F} to avoid any confusion
with the value of the function F' at time t.

Direct substitution of equations (5.51) and (5.52) in (5.50) implies that
the argument of the expectation follows an Ité process. Thus the expectation
in (5.50) is zero only if the drift of this process is zero. Setting the drift
to zero, we obtain a second-order partial differential equation (PDE) for
optimally invested wealth:

Uz (XY + (r+0%y) XFx + pgFs + (1 — 1) OF /ot
1 1
+§U?\4X2FXX + 50’%7,5]‘735 —opyosXFxg +
= (O'%WFXX — UMast) , (5.53)

with boundary condition

lim Eo [F (X, 5,8)] = 0. (5.54)

Solving for optimal consumption and portfolio choice

Once we have solved for optimally invested wealth W = F (X, S,t), we
can eagily solve for consumption and portfolio choice. To solve for consump-
tion, we use the first order condition (5.44):

1
o - ' (x)

= U (W) , (5.55)

where we have assumed that F'(X, S, t) is invertible, so W = F(X, S,t) =
Xy = F~Y W, S,t).

To solve for optimal portfolio choice, we simply equate the diffusion terms
of the intertemporal budget constraint (5.5) and the equation describing the
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dynamics of optimally invested wealth (5.52), since both must be the same
along the optimal path:

OzFO‘deRt = —FxX(TMdZRt + FsastS’t (5.56)

= <MP — T) FXXdZP,t + FSUSdZS,t-
op

This equation highlights the importance of a complete-markets assump-
tion in the Cox-Huang approach. The left-hand side of this equation depends
only on dZp;, but the right-hand side depends on both dZp; and dZs;. To
identify a we need either that Fg = 0, or the complete-markets assumption
that dZp; and dZg; are perfectly correlated so that dZs; = dZp;. Since
Fs need not be zero in general, solving for « requires that we assume that
markets are complete. Under this assumption, the optimal portfolio rule is

FxX ([ (S,t) —r(S,t) Fs (05 (S,t)
o= (0 wh )+ 7 (Goen) e

By analogy with equation (5.11) with pg p(S5,%) = 1, we can easily iden-
tify the first component of equation (5.57) with the myopic component of the
optimal portfolio rule, and the second component with the hedging compo-
nent. As Cox and Huang (1989) note, equations (5.11) and (5.57) also allow
us to relate the dynamic programming approach and the Cox-Huang ap-
proach. Direct comparison of these equations shows that the value function
and optimally invested wealth verify the following identities:

FyX = W Fg— —Jws
Jww

b
Jww

(5.58)

5.2.3 Our example revisited

We can easily apply these results to the example of optimal portfolio choice
with time-varying interest rates and power utility given in section 5.1.2.
First, note that the dynamics for the instantaneous interest rate and the
return on a long-term bond imply the following process for the stochastic

discount factor:
dM;

M
This process implies that dX/X = 7 + A2/o2 — X\ o,dZ, and dXdS =
dXdr = —\dt. With power utility defined over consumption, U(Cy) =
e B Cl77 /(1 — ). Thus

A
= —’I"tdt + O_—dZ»,‘7t. (559)

Cy = e P X} = UZH (XY, (5.60)
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Substituting these results into (5.53) we obtain:

0 = e PN XYY —rF+rXFx + (ke (0, — 1) + \) F, + OF /0t
1 A2

1
+5 5 X Fxx + 507 = AX Fxo, (5.61)
'

subject to the boundary condition lim;_,, Eg [F (X, ,t)] = 0.
Wachter (1999) shows that this equation has a solution of the form

T—1

F(X,rt)=eP/7 X7 lim U (14, s) ds, (5.62)
T—00 |
where . )
U (r4,8) = exp {%ﬁ +A(s) — gs} , (5.63)

and A(s) is a function of s. Wachter (1999) notes that the limit of the func-
tion W¥(r, s) as vy — oo is the price of a zero-coupon bond with maturity s
that pays one unit of consumption at maturity: limy_.o ¥(r¢,s) = P (r,s) =
exp{—b(s)r;+ A(s)}. This has important implications for the interpretation
of the optimal consumption and portfolio rules.

The optimal rules can be found by direct substitution of F(X,r,t) into
(5.55) and (5.57). The optimal consumption rule is

C U51 (X—l) ' T—t -1
A e (Tango/O U (1, 8) ds) : (5.64)

Since limy_,o ¥(r, s) is the price of a zero coupon bond with maturity s,
the limit as v — oo, of the integral expression in (5.64) must be the price
of a coupon bond with maturity 7. Therefore, as 7 — oo and v — oo, this
expression converges to the price of a real consol bond that pays one unit of
consumption each period. Optimally invested wealth for an infinitely risk
averse investor is equal to the value of a real consol bond that pays C units
of consumption each period.

For an investor who is not infinitely risk averse, a similar interpretation
is still possible. Wachter (1999) shows that ¥(r, s) is the current value of
one unit of consumption s periods ahead for an investor with relative risk
aversion coefficient v who is maximizing utility over consumption s periods
ahead. Therefore, the integral expression in (5.64) is the value for this
investor of one unit of consumption per period in the future.
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The optimal portfolio allocation to long-term bonds is

XFy A Foo1
_ _ & 5.65
“ F o2(T —t) Fb(T—1) (5.65)

_ 1A +<1 1) L Jo 0w 8)b(s)ds

— — lim
vb(T —t)o? b(T —t) T—o0 OTft\Il(rt,s)ds

9

where the first term of « is the myopic demand for long-term bonds and
the second term is the intertemporal hedging component. Given our earlier
interpretation of fOT 7t\11(7“t,s), it is easy to see that the ratio of integrals
in the intertemporal hedging component measures the modified duration of
optimal consumption. Wachter (1999) shows that as v — oo, a converges
to a position in the available zero-coupon bond that, in combination with
the instantaneously riskless asset, replicates the payments on a real consol
bond.

Equation (5.62) writes the solution of the PDE (5.61) in integral form.
To evaluate this function, it would be necessary to do numerical integration.
However, it is possible to find an approximate analytical solution to this
PDE that does not require numerical integration. This solution is identical
to the solution we obtained using dynamic programming. To see this, note
that the first term of equation (5.61) is simply the consumption-wealth ratio.
Thus we can approximate this ratio using the same log-linear approximation
as in section 5.1.3. First, we substitute hg + hi(c; — f;) for the first term in
the equation. Next, we guess that

F(X,rt) = e P X7 exp {Co + Cire} (5.66)

and we use this guess to compute all the expressions in the PDE (5.61)
involving F' or its derivatives. We also note that this guess implies ¢; — f; =
—Cy — Cyry. 1t is straightforward to see that substitution of the guess into
the approximated PDE leads to the same approximate analytical solution
for the optimal portfolio policy and the optimal consumption-wealth ratio
that we obtained before in equations [5.25) and [5.26].

5.3 Recursive Utility in Continuous Time

In Chapter 2 we introduced recursive Epstein-Zin preferences as a way to
generalize the standard, time-separable power utility model to separate rel-
ative risk aversion from the elasticity of intertemporal substitution of con-
sumption. Duffie and Epstein (1992a, 1992b) and Fisher and Gilles (1998)
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derive a continuous-time analogue of the Epstein-Zin utility function. We
adopt the Duffie and Epstein (1992b) parameterization of recursive utility:

Ji = By [/toof(CS,Js)ds] , (5.67)

where f(C,J) is a normalized aggregator of current consumption and con-
tinuation utility that takes the form

-5 (1 =) )7

Here 8 > 0 is the rate of time preference, v > 0 is the coefficient of relative
risk aversion, and 1 > 0 is the elasticity of intertemporal substitution. Power
utility obtains from (5.68) by setting ¢ = 1/~.

The normalized aggregator f(C, J) takes the following form when ¢) — 1:

f(C,J)=

f(C,J)=ﬂ(1—v)J[log(C)— log<<1—w>J>]. (5.69)

1—x
Duffie and Epstein (1992a, 1992b) show that the Bellman Principle of Op-
timality applies to recursive utility. From a computational perspective, the
only difference from the standard additive utility case is that we need to
substitute the normalized aggregator f(C,J) for the instantaneous utility
function U(C) in the Bellman equation (5.6).

5.3.1 Our example revisited once more: An exact solution
with unit elasticity of intertemporal substitution.

This section derives a solution to the model with stochastic interest rates
under recursive utility. This is the continuous-time counterpart of the model
with inflation-indexed bonds that we solved in section 3.2. We argued in
chapters 3 and 4 that our discrete-time approximate analytical solution is
exact in continuous time with diffusions for asset prices, provided that the
elasticity of intertemporal substitution is one. We now prove this claim.

The Bellman equation for the recursive-utility model with ¢ = 1 is
identical to (5.16), except that we substitute (5.69) for the instantaneous
power utility of consumption e™# C1=7/(1 — 5). The first-order condition
for consumption (the envelope condition) becomes

C=B1-7) 5 (5.70)
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and the first-order condition for « is identical to (5.18). We now guess that
the solution to the Bellman equation has the form

Wi=
1—~"
Substitution of this guess and the first-order conditions into the Bellman
equation lead to the following ordinary differential equation (ODE):

J(W,rt)=1(r,t)

(5.71)

g \?
0 = — logl + ( BlogB — B+ 5 t+r
1—7 2vo

r

o2 (I, \? K AN\ T o2 I
Ir (I AU RN A I I LS
+27(I> +(1—7( ") 7>I+2(1—7)I (5:72)

This equation has an exact solution of the form
I(r,t) = exp{Co + Cirt}, (5.73)

where C1 = (1—7)/(8+ k), and Cp is given in the Appendix. This solution
implies a constant consumption-wealth ratio equal to @, and an optimal
portfolio rule given by (5.26) with hy = .

When the elasticity of intertemporal substitution is not equal to one,
we can still obtain an approximate analytical solution along the lines of the
solution we presented in section 5.1. The Bellman equation is once again
identical to (5.16), except that we substitute (5.68) for the instantaneous
power utility of consumption. The first-order condition for consumption is
now -

L—7) Jy) T BY
oo 0= 5 50
J
w
and the first-order condition for portfolio choice is again identical to (5.18).
We guess a solution of the form

1y WY
T (W) = H (1) 75 3. (5.75)
which leads to the following non-homogeneous ODE:
1—9) A2 1-—
1—~ 2(l=v)of 1-v 1-9
2

(i) () (s ) 3 )
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Equation (5.76) reduces to equation (5.20) when ¢ = 1/, i.e., when
recursive utility reduces to time-additive power utility. We can find an
approximate analytical solution to this equation using the same approach
as in section 5.1. Once again, the envelope condition (5.74) implies that
first term of the equation, 8% H1, is the optimal consumption-wealth ratio.
Using the loglinear approximation 8¥H ' ~ hg + h1(c; — wy), the resulting
ODE has a solution of the form H; = exp{Cy + Cir}, with C; = —(1 —
¥)/(h1 + K1). The optimal log consumption-wealth ratio is given by

-9
h1+"£r

¢t —we = YPlog B — Cy+ T, (5.77)
and the optimal portfolio rule is identical to the optimal rule under power
utility (see equation [5.26]). Thus, the optimal portfolio rule depends on the
investor’s willingness to substitute consumption intertemporally only indi-
rectly, through the parameter hy that determines the mean log consumption
wealth-ratio.

5.4 Should Long-Term Investors Hedge Stock Re-
turn Volatility Risk?

The continuous-time approach that we have just presented is especially help-
ful in showing how long-term investors should react to time-varying risk.
Motivated by empirical evidence, Chapters 3 and 4 examined the relevance
of time-variation in interest rates and expected excess bond and stock re-
turns for long-term portfolio choice. There is equally strong empirical evi-
dence that the volatility of stock returns is time varying. Partial surveys of
the enormous literature on time-varying volatility are given by Bollerslev,
Chou, and Kroner (1992), Hentschel (1995), Ghysels, Harvey, and Renault
(1996), and Campbell, Lo, and MacKinlay (1997, Chapter 12).

Chacko and Viceira (1999) explore the implications of changing volatility
for long-term portfolio choice. They assume that the only source of time-
variation in investment opportunities is time-variation in instantaneous pre-
cision, the inverse of the instantaneous variance of stock returns. Their
model writes y; for instantaneous precision, and equations (5.1)-(5.3) be-
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dP; 1
— = dt —dZ .
2 ppat + 4/ ” Pyt (5.78)
dB;
— = 7rdt .
5 r (5.79)
dye = Ky (0, —ye)dt +oydZy,, (5.80)

and dZptdZy,: = pp,dt. Thus precision follows a mean-reverting process
correlated with stock returns, with long-term mean equal to ¢, and reversion
parameter k, > 0.3 This modeling choice implies that the ratio of the
mean expected excess stock return to the variance of stock returns, which
determines the myopic portfolio, is linear in the state variable (precision).
However, the Sharpe ratio is not a linear function of the state variable, but
a square-root function. Thus this model is not mathematically equivalent to
the model we discussed earlier in this chapter with a linear, mean-reverting
process for the expected excess return; that model implies both a linear
Sharpe ratio and a linear ratio of mean excess return to variance.

Chacko and Viceira (1999) note that the parameterization of the pre-
cision process implies a mean-reverting process for instantaneous volatility
vy = 1/y;. The process for vy can be found by applying Ito’s Lemma to
(5.80):

d’Ut

= Ko (Oy — v) dt — oy\/vidZy 4, (5.81)
t

where 6, = (0, — ag/my)*l and K, = ky/6,. Equation (5.81) implies that
proportional changes in volatility are correlated with stock returns, with
instantaneous correlation

Corrt(@,d?‘sj) = —ppy- (5.82)

Ut

Equation (5.81) can capture the main stylized empirical facts about stock
return volatility: Stock return volatility appears to be mean-reverting and
negatively correlated with stock returns. Moreover, proportional changes in
volatility are more pronounced in times of high volatility than in times of
low volatility. Table 5.1, taken from Chacko and Viceira (2000), shows esti-
mates of equations (5.78)-(5.81) for US monthly stock returns from January
1926 through December 1997, and annual stock returns from 1871 through
1997.4 Standard errors appear in parenthesis, and parameter estimates are
annualized to facilitate their interpretation.

3In order to satisfy standard integrability conditions, we assume that 2k,0, > 03.
4These estimates are obtained using the Spectral Generalized Method of Moments of
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Table 5.1: Stochastic Volatility Model Estimation

1926.01 - 1997.12 1871 - 1997

w—r 0799 0841
(.0238) (.0370)

K 3413 0426
(.3114) (.0445)

6 27.7088 24.7718
(1.8153) (12.6946)

o 6512 1.1786
(.4855) (.7065)

p 5355 3708
(.2381) (.3769)
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The estimates in Table 5.1 imply a mean excess stock return of about 8%
per year, and an unconditional standard deviation of stock returns around
20% per year. The instantaneous correlation between shocks to volatility
and stock returns (—pp,) is negative and relatively large—almost —54%
in the monthly sample and —37% in the annual sample. The estimate of
the mean-reversion parameter s, implies a half-life of a precision shock of
about 2 years in the monthly sample,and about 16 years in the annual sam-
ple. French, Schwert and Stambaugh (1987) and Campbell and Hentschel
(1990) have also found a relatively slow decay rate for volatility shocks in
low-frequency data. This slow reversion to the mean in low-frequency data
contrasts with the fast decay rate detected in high-frequency data by An-
dersen, Benzoni and Lund (1998) and Chacko and Viceira (1999).°

We assume that investors’ preferences are described by the Duffie-Epstein
recursive utility function (5.68)-(5.69), and the intertemporal budget con-
straint is given by

1
AWy = [ag(p — )Wy +r Wy — Cildt + oy Wiy /y—dzp,t. (5.83)
t

Chacko and Viceira (1999) present an exact solution for the case with unit
elasticity of intertemporal substitution, and an approximate solution for all
other cases. They show that, consistent with the results of chapters 3 and 4,
empirically the effect of intertemporal substitution on the optimal portfolio
rule is negligible. Thus we present only their exact solution with ¥ = 1. In
this case, (5.69) and (5.83) imply the following Bellman equation:

1 1
0 = sup {f (C )+ [a(pp — )W +1rW = Cldw + §a2W2JWW§
,C
1
+ry(0y —y)Jy + §J§Jyyy + ppyo*yaWJXy} , (5.84)

where f (C, J) is given in (5.69) and subscripts on J denote partial deriva-
tives.

Chacko and Viceira (1999) and Singleton (1997). This estimation method is essentially a
generalized method of moments based on the characteristic function of the stock return
process. The source of the monthly data is CRSP, while the source of the annual data is
Shiller (1989) and subsequent updates.

®Chacko and Viceira (1999) estimate the half-life of a shock to precision to be about
3 months in weekly data for the period 1962-1998. These results suggest the presence of
high frequency and low frequency (or long-memory) components in stock market volatility.
Chacko and Viceira (1998) show that a model of multiple additive components in stock
return volatility, each one operating at a different frequency, generates a similar pattern
in the estimates of k, when stock returns are sampled at different frequencies.
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The first-order condition for consumption is identical to (5.84), and the
first-order condition for portfolio choice is

1 ( T) JWy
=—F (1 — — ————Pp,0yY.
W dww faw YT W PPV

¢ (5.85)
Substitution of the first-order conditions into the Bellman equation, and a
guess for the value function of the form J(W,y,t) = I(y, )W} 7 /(1 — ~)
yield the following ODE:

0 = (ﬁlogﬁﬂ 5 IOg(lv)+My+r>
1—7 2
1 PpyTy (1 —7) K I
—:ﬂlog[—l—( — y—|—1_y7(9y—y)) (7y>
p*o? (I 2 o? 1
L y(Ty) " 2(1_7)3/(%). (>:56)

Equation (5.86) has an exact solution of the form I = exp{Cpy+ Ciy:}
that leads to two algebraic equations for Cyp and C] given in the Appendix.
This solution implies the following optimal portfolio rule:

1 1 ~
=z (h=7)ye + (1 - ;) ppyoyC1yt, (5.87)

where Cy = C1/(1 —~) > 0.

The optimal portfolio demand for stocks has two components. The first
one is the myopic demand, that depends only on the risk premium multiplied
by the inverse of the relative risk aversion coefficient and current volatility.
The second component is the intertemporal hedging demand. The sign of
this demand depends on the sign of the correlation between unexpected
returns and changes in volatility (—ppy ) and the sign of (1 — 1/v). Table
5.1 shows that empirically the correlation ppy is negative, which implies
that investors with v > 1 have a negative intertemporal hedging demand for
stocks.

Table 5.2 reports the optimal portfolio allocations to stocks implied by
the process estimates shown in Table 5.1. The table assumes a rate of time
preference () equal to 6% annually; when ¢ = 1, this is also the optimal,
constant consumption-wealth ratio. For each sample period, the table has
two columns. The first column (“Mean”) reports the mean percentage al-
location to stocks, and the second column (“Ratio”) reports the percentage
ratio of the hedging demand to the myopic demand, which is constant in
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Table 5.2: Mean Optimal Percentage Allocation to Stocks and Percentage
Hedging Demand Over Myopic Demand

R.R.A. 1926.01 - 1997.12 1871 - 1997

Mean Ratio Mean  Ratio
1.00 221.39 0.00 208.33 0.00
1.50 145.93 -1.13 131.87 -5.05
2.00 108.84 -1.67 96.79 -7.08
4.00 53.98 -2.47 47.02 -9.72
10.0 21.49 -2.93 1852 -11.12
20.0 10.73 -3.09 9.21 -11.57
40.0 5.36 -3.16 459 -11.78

(5.87). This ratio tells us the reduction in portfolio demand due to hedging
considerations.

Table 5.2 shows that the estimated volatility process implies a small
impact of time-variation in volatility on the optimal portfolio demand for
stocks. In the monthly sample hedging demand reduces the demand for
stocks by at most 3.2%, for highly risk averse investors with v = 40, and in
the annual sample the reduction in demand is at most 12%. This impact is
relatively modest when compared with the effect of time-variation in interest
rates or risk premia on the portfolio demand for stocks.

The percentage reduction in the stock demand implied by the annual
estimates is at least three times larger than the reduction implied by the
monthly estimates. The parameters causing this difference must be the re-
version parameter (k) and the correlation between shocks to volatility and
stock returns (ppy), because these are the only parameters whose magni-
tude is significantly different across samples. The reversion (or persistence)
parameter affects the optimal portfolio demand for stocks through the co-
efficient C7. Chacko and Viceira (1999) show that the absolute size of the
hedging demand for stocks is increasing in the persistence of volatility shocks
when v > 1.

Figures 5.1 and 5.2 explore the effects of each parameter on the ratio of
hedging demand to myopic demand. Figure 5.1 plots the ratio of hedging
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Figure 5.1: Effect of persistence on portfolio demand
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demand to myopic demand for values of x, implying a half-life of a shock
between 6 months and 30 years, holding constant the other parameters at the
values implied by the monthly dataset. Figure 5.2 repeats the experiment,
this time varying the correlation coefficient and holding constant the other
parameters. The vertical line in each plot intersects the horizontal axis at
the parameter value implied by the monthly dataset.

Figures 5.1 and 5.2 suggest that hedging demand is more sensitive to
the persistence of volatility shocks than to the correlation between volatility
shocks and stock returns. Figure 5.1 shows that increasing persistence pro-
duces a noticeable reduction on portfolio demand, even for investors with
low coefficients of relative risk aversion. For example, an investor with v = 4
would reduce her myopic demand by approximately 10% instead of 2.5% if
the half-life of a shock were 10 years instead of 2 years. By contrast, the
effect of changing the correlation is much smaller. Even if the correlation
between unexpected returns and shocks to volatility were —1, hedging de-
mand would not reduce myopic demand by more than 6% for an investor
with v = 20.

5.5 Conclusion

This chapter has examined the solution to dynamic asset allocation problems
in a continuous-time framework. We have linked the approximate solution
methodology used in this book to the vast literature on continuous-time
portfolio choice.

Continuous-time methods are particularly suitable for modelling time-
variation in volatility, so this chapter has explored the implications of volatil-
ity movements for asset demand. Empirically, increases in stock market
volatility tend to persist for some time, and they are often associated with
low realized excess stock returns. Short-term investors should respond by
reducing the allocation to equities when volatility increases. Long-term
investors should go further. The persistence of volatility shocks, and the
negative correlation of these shocks with realized excess stock returns, sug-
gest that long-term investors should hedge volatility risk by reducing their
allocation to equities. However, shocks to volatility in the US stock market
do not seem to be sufficiently persistent and negatively correlated with stock
returns to justify a large negative intertemporal hedging portfolio demand
for stocks. When compared to the size of intertemporal hedging demands
induced by changes in interest rates and risk premia, the negative intertem-
poral hedging demand created by time-varying risk is relatively modest.
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A limitation of the empirical analysis in this chapter is that we have
assumed constant expected excess stock returns when studying volatility.
A fully general model would allow a set of state variables to shift both the
equity premium and stock market volatility jointly. As we have noted,
hedging demands would then depend on the implied process for the Sharpe
ratio.  Authors such as Campbell (1987), Harvey (1989, 1991), Glosten,
Jagannathan, and Runkle (1993), and Ait-Sahalia and Brandt (2000) have
modelled time-varying returns and volatility jointly. These studies typi-
cally find that the effects of state variables on expected returns are stronger
than their effects on volatility, which suggests that the negative hedging de-
mand associated with volatility risk will be modest even in a framework that
combines time-varying volatility with the time-varying returns modelled in
Chapter 4.
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Chapter 1

Appendix: Introduction

This Appendix contains mathematical derivations of some selected results
presented in John Campbell and Luis M. Viceira’s book “Strategic Asset
Allocation: Portfolio Choice for Long-Term Investors.” To avoid confusion
between equations in the main text of the book and equations in this Ap-
pendix, we number equations in the Appendix as (Al), (A2), etc.



Chapter 2

Appendix: Mathematical
Derivations

2.1 Derivation of selected mathematical results in
Chapter 3

2.1.1 Derivation of the approximation to the log portfolio
return

In the case where there are two assets, one risky and one riskless, we have
from (2.1) that

1+ Rpir1 lta < 14+ R 1)
2 fpitl S )
1+ Ry 1+ Ry

Taking logs, this can be rewritten as
it = Tl = l0g [1+ o (exp(repr — rpe1) — 1]

This equation gives a nonlinear relation between the log excess return on the
single risky asset, 7441 — 141, and the log excess return on the portfolio,
Tpt+1 — Tfe+1. Lhis relation can be approximated using a second-order
Taylor expansion around the point 7441 —77441 = 0. The function f; (ree1—
rri+1) = log [1 4+ ay (exp(riy1 — rp¢41) — 1)] is approximated as

flress = 1) = Ji0) + O st = rrass) + 3O esn = g

The derivatives of the function f;, evaluated at ry11 —7 41 = 0, are f{(0) =
ag and f{'(0) = ay(1—ay). Also, we replace (ry11—7441)? by its conditional
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expectation o?. Thus the Taylor approximation is

1
Tpt+1l — Tfi+1 = ap(rep1 — Tf,t+1) + §Oft(1 - at)”?-

The log excess portfolio return takes the same form as the simple excess
portfolio return, with an adjustment factor in the variance of the risky asset
return. The adjustment factor is zero if the portfolio weight in the risky
asset is zero (for then the log portfolio return is just the log riskless return),
and it is also zero if the weight in the risky asset is one (for then the log
portfolio return is just the log risky return). The approximation in (2.21)
can be justified rigorously by considering shorter and shorter time intervals.
As the time interval shrinks, the higher-order terms that are dropped from
(??) become negligible relative to those that are included, and the deviation
of the realized squared excess return (ry41 —ry441)? from its expectation o7
also become negligible.

In the limit of continuous time, the approximation is exact and can be
derived using Ito’s Lemma. For completeness we present the derivation in
the most general case where there are multiple risky assets and no riskless
asset. The log return on the portfolio 1, ;11 is a discrete-time approximation
to its continuous-time counterpart. We assume that there are (n + 1) risky
assets, one of which we use as a benchmark. Without loss of generality, we
assume that the benchmark asset is a risky short-term instrument whose
price we denote by B;. We begin by specifying the return processes for the
short-term instrument B; and all other risky assets P; in continuous time:

dB
—L =y dt + oy dWi,
By ’

dP

—L = pdt+odWy,
P,

where p,; and p, are the drifts, o}, and o are the diffusion, and Wy is a m-
dimensional standard Brownian motion. The dimensions of p, p, oy, o are
1x1,nx1,1xm,nxm, respectively. We allow the drifts to depend on other
state variables, but for notational simplicity, we suppress this dependency
and simply use the time subscript. = Moreover, note that the same W;
appears in these two equations.

Since we are working with log returns, we apply Ito’s Lemma to each
asset:

dBy 1

dlog Bt = (E) — 5 (O'bO'é) dt,
AP\ 1

leg H,t = <?7t> — 5 (O'ZO',L) dt,
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where o; is the ith row of the diffusion matrix o, and i =1, .., n.
Let Vi be the value of the portfolio at time t. We will use dlogV; to
approximate rp;y1. By Ito’s Lemma,

avi\ 1 [/dv;\?
dlogVi=|— ] —-—=[—1 .
o8 < Vi > 2 < Vi )
We will now derive these 2 terms in order:

dV; , [ dP;y , \ dBy
i —t 1— it
Vi at<Pt>+( atb) B,

- a; <d log Pt + % [O'Z'O';-] dt) + (1 - a;[') <d10g Bt + % (O'bO';)) dt)
= a;(legPt_dlogBt‘L)-l—dlogBt
1

+§a; ([oio] — ooy, - 1) dt + %a'ba'Zdt,

where ¢ is a n x 1 vector of ones and the bracket [-] denotes a vector with
0,0 the ith entry. Next,

d 2
(%) = o} (dlogP; — dlog B; - ¢) (dlog Py — dlog By - 1)’ ay + (dlog By)*
t
+20x; (dlog Py — dlog By - ¢) (dlog By) + o (dt) ,

where the o(dt) terms vanish because they involve either (dt)? or (dt) (AW}) .
Now, from equation (??)—(??) and ignoring dt terms,

dlogP; —dlogB; -t = (o0 — - 0}) dW4.
Thus,

(dlogPy — dlog By - 1) (dlog Py —dlog B, 1) = (o0 —t-0p) (0 —1-0p),
(dlogP¢ —dlog B -t) (dlog By) = (0 —t-0yp)- 0.

Collecting these results and using our notation for excess returns and the
return on the benchmark risky asset (x¢11 = dlogP; — dlog B; - ¢, and
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r0,t+1 = dlog (By)) and setting dt = 1, we have:

Tp,t+1
= dlogV;

1
= X1 +roer + §a; ([eio}] — ovoy, - 1)

1
—3 (o (00— 0) (0 —1-03) oy + 200 (00— v 0p) 0]
= X411+ 10141 — = (0 —L-0p) (0 —t-0p) oy

2

+%a2 ([oio}] + ovoy, -t — 2007) .

Similarly, using the notation in book for variances and covariances, we have

(6 —t-0p) (0 —1-0p) = %y
oo, = ob,
l0:0] + o040, L — 200}, = of.

With these terms, the return on the portfolio is

1 1
/ /2 !
Tpi+1 = OXip1 + 70041 + 50407 — §at2tat:

which is equation (2.23) in text.

2.2 Derivation of selected mathematical results in
Chapter 3

2.2.1 Derivation of the approximation to the log intertem-
poral budget constraint

Taking logs on both sides of the intertemporal budget constraint (3.2) we
obtain equation (3.3) in text:

Awyyy = 1p i1+ log(l — exp(e; — wy)). (A1)

The second-term on the right-hand side of (A1) is a non-linear function
of the log consumption-wealth ratio. A first-order approximation of this
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function around the mean of the log consumption-wealth ratio gives:

log(1 —exp(cy —wy)) ~ log (1 —exp (E[c; — wi]))
_exp(E e —wi))

1 —exp (E et —wy)

= log (1 —exp (E[c; — wi]))

exp (E [¢; — wi])

((er —wy) — Eer — wy])

1 —exp (E et —wy)) E e —w]
— ixfx(pE(Et[c_t i"ti})t]) (e — wy). (A2)
Pelining p=1—exp(E[ct —wy)), (A3)
we can rewrite (A2) as
g1 = expler — ) ~ b+ (1= 5) (o= wy). (A1)

where

exp (E [cr — wy))

k= log(l—exp(E[ct —wy)) + 1 —exp(Ela —wy)

(E [t —wy])

1—p

= log(p) + log (1 —p).

Note that this approximation is exact when the optimal consumption-wealth
ratio is constant. so that ¢, — w; = E¢[cp — wyl.

Direct substitution of (A4) into (Al) gives equation (3.4) for the log
intertemporal budget constraint in text.

2.2.2 Solution to model with constant variances and risk pre-
mia when there are multiple risky assets

Chapter 2 shows (see equation [2.51]) that under Epstein-Zin utility with
multiple risky assets, the premium on each risky asset over the risky bench-
mark asset is given by

1
Et (Tit41 — 70,041) + 5 Vary (75,441 — 70,t41)

0
= v Covi (Aciy1,Tip+1 — T0,t41)

+ (1 = 0) Covy (rpt41,Tig+1 — To,t+1)
— Covy (4,641 — 70,641, 70,t4+1) 5 (A5)

6
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where 6 = (1 —7)/(1 =4 1).
Using the log budget constraint (3.4) and the trivial identity Ac;4q =
(ct41 — wig1) — (¢p — wy) + Awgpq, we have

Covi (Acty1,Ti 441 — T0,641)

((ct41 —wi1) — (¢4 —wi) + AWip1, 75441 — 70,64+1)
(

(

Covy (Ct+1 — w1, Tit+1 — 7“0,t+1) + Covy (Tpt+1,7‘z‘,t+1 - T’O,t+1) (AG)

== COVt

= Covy (C1 — W1, Tip41 — T0,t41) + Covy (Awip1, 75 141 — 70,641)

Substitution of (A6) into (A5) gives

1
Et (Ti4+1 — To,t41) + 5 Varg (75 441 — T0,t41)

= E COVt (Ct+1 — W41, T4 t4+1 — rO,t—i—l)

0
+ (1 -0+ " Covi (Tp,t41,Tit+1 — T0,t4+1)
— Covy (ﬂ',tﬂ —T0,t+1, 7"0,t+1) )

or, in vector notation,

1

E¢ (ri41 — rog+1t) + 5‘7?

-
= - <— Covy (Ci41 — Wig1,Tp1 — To,441L)

1—
+v Covi (Tp t+1, Tt41 — To,t+1¢)
— Covi (Tep1 — 10,4414, 70,641) 5 (A7)

where we have substituted (1 —)/(1 — 1) for 6. &? denotes a column
vector with the variance of the excess return on each asset over the return
on the benchmark risky asset:

07 = (Vary (71441 — 70,441) » oy Vary (Tngg1 — To441)) -

The equation for log portfolio return (2.23) implies that the second co-
variance term in (A7) is

Covi (Tp,t41,Te4+1 — T0,t4+1L)
= Covy ((re41 — 7"0,t+1b) +70,t4+1,Yt4+1 — 7"0,t+1b)

!/
= o Varg (41 — 7“0,t+1b) + Covy (r07t+17 i+l — 7“0,t+1b) )
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so that (A7) becomes

L 5
Et (ri41 — rog+1t) + 5
l—v
= T2 Covi (Ct41 — Wi, Teg1 — T0,641L)

+yag Varg (rep1 — rogsit)

— (1 =) Covy (re41 — 00412, T0,041) 5 (A8)
from which we obtain immediately an expression for ay.

Defining
_ Covy (= (¢t41 — Wig1) , Top1 — T0,441L)
Opt = )
1—1
Et = Vart (I‘t+1 — T07t+1L) s

and

oot = Covy (Yep1 — 70,6418, 70,641)
the expression for ay resulting from (A8) becomes

1. 1 —
o = ;Et ' (EtI't+1 —7“0,t+1b+0'%/2) + <1_ ;) %y How —on),

which is (3.21) in text. Equation (3.20) obtains when the benchmark asset
is riskless one-period ahead, so that ag; = 0.
Note that section 3.1.3 shows that

(Et+1 — Et) (ct41 — wi41)

1=

= (Et+1 — Et) Z ,Ojrp,t—‘rl-‘rj' (A9)
j=1

This section also shows that, when time-variation in interest rates is the
only source of variation in investment opportunities, the right-hand-side of
(A9) is equal to

[o.°] [o.o]

(Et+1 — Ex) Z Prpir1vj = (Ber1 — Ex) Z P
j=1 Jj=1
so that
Ct41 — Wil
o = Covg <—%¢+,rt+1 — r07t+11,>

o
= Covi | —(Ber1 —Ee) ) p/rpestegsTeer —ropne |, (AL0)
=1

8
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as stated in (3.19).
From equation (3.18) in text, it is easy to see that, if p = p,, then
equation (A10) becomes

e, 0)
o = Covy | —(Ei41 —Ee) E PTf 4145, Ti41 — T0t+1L
Jj=1

= Covi (Te 41, 441 — T0,t41L)
= O,

so that X, 1oy, = 3, 1oy is the vector of population regression coefficients
from a multiple regression of an inflation-indexed consol return onto the set
of risky asset returns, as stated in text.

2.2.3 Recursive expression for A4,

The recursive equation for the coefficient A, in the indexed zero-coupon
bond pricing equation (3.27) is given by

1
Ap — Ap1 = (1 - ¢z) :umBn—l - 5 (/Bmz + Bn—1)2 0—3: + 072’11 .

with Ag = By = 0. See Campbell, Lo and Mackinlay (1997) for a derivation
of the pricing equation (3.27).

2.2.4 Pricing nominal bonds

The pricing of default-free nominal bonds follows the same steps as the
pricing of indexed bonds. The relevant stochastic discount factor to price
nominal bonds is the nominal SDF ]V[tﬂz_l, whose log is given

My = Mep1 — Tepls (A1)

Since both M;;; and Il;4; are jointly lognormal and homoskedastic, ]\/[t$_~_1
is also lognormal. The log nominal return on a one-period nominal bond is
Ti“—l = —log E¢[My41], or

1
T?,t+1 = —FE [mfﬂ} -3 Var, [merl}
1
= Tyt 2z2— 5 {(6777,;(: + 67r;c) 20-20 +572rz02 + (]- + 671’)20-7271 + 0’72r ,
a linear combination of the expected log real SDF and expected inflation.

9
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The risk premium on a 1-period nominal bond over a 1-period real bond
can be written as

$ 1 2 2
Ex [Tl,t+1 — T+1 — T1t+1 + 5 Var, [Wt+ﬂ = _Bmwﬁﬂxo—z - /Bﬂmama

which has the same form as equation (3.38) for equities.

The log price of an n-period nominal bond, pi +» also has an affine struc-
ture. It is a linear combination of x; and z whose coefficients are time-
invariant, though they vary with the maturity of the bond. As shown in
equation (3.36), _pi,t =A% ¢ Binmt + Bgynzt,where

1— o2
Bin = 1+ (rmein—l = 1— (,251
i
1—¢7
Bg,n = 1+ ¢ZB§7n_1 = 1— (Z;
z
AS— A5 | = (1—¢,) B}, 1+ (1 —¢,)uBS
n n—1 z) Mz 1,n—1 2) 2 2,n—1
1 s s\ 2
_5 (Bmm + wa + Bl,n—l + /BszQ,n—1> Og
1 2 1 )
_5 (67& + Bg,nfl) O-g - 5 (1 + 67rm + 6zm) 0'3,1
1
_5027

and A3 = B , = BS, =0.
The excess return on a n-period bond over the one-period log nominal
interest rate is

3 3 _ 3 3 3
Tog4l ~ 71441 = Prno1g41 — Pngt TPl

- = (Bf,nfl + Bg,nflﬁzx) (ﬁmw + 67r;c) Ufc - Bg,nflﬁﬂag

1
- (1 + me) Bzmagn - 5 (Bf,nfl + Bg,nflﬁzm) 202@
1 2 1
_5 (Bg,n—1> 0—2 - 5/627710—7277,
- (Bin—l + Bg,n—lﬁzm) Ex,t+1 — Bg,n—lﬁzmgm,t+1

8
—Bj - 16zt41-

The terms in Bg 1022 and B§ n—10.m arise because shocks to expected
inflation are correlated with shocks to the expected and unexpected log real
SDF. Thus risk premia in the nominal term structure are different from

10
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risk premia in the real term structure because they include compensation
for inflation risk. Like real risk premia, however, nominal risk premia are
constant over time.

2.3 Derivation of selected mathematical results in
Chapter 5

2.3.1 Coefficients of the value function in the model with
time-varying interest rates and power utility

Substitution of (5.22) into (5.20) leads to

_ dhe N
0 = T 1—7(CO+01T)+2W2 1_7—#7“
2
R e — ) — _9 o2
+<1_7(9 r) >‘>Cl+2(1_7)01, (A12)

where we must determine Cy and C; so that the equation holds for all
values of the instantaneous interest rate. Simple inspection of the terms
in the equation shows that the right hand side of the equation is a linear
combination of the instantaneous interest rate. Thus Cy and C; must be
such that both the intercept and the slope of the linear equation are zero
simultaneously:

h
0 = dmEne g (A13)
L=n
7 Yho N
0 1_700-%-1_74-270_2 T
2 ) R
SN o puup i’ ) Al4
<1—7 FTa -yt (AL4)

Equation (A13) is a linear equation whose only unknown is Cj. The
solution to this equation is given in (5.23). Equation (A14) depends on
both C7 and Cp, but it is linear in Cy given C;. Substituting the expression
for C that obtains from (A13) into (A14), we can solve for Cjy immediately.

11
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2.3.2 Coefficients of the value function in the model with
time-varying interest rates and recursive utility (unit
elasticity of intertemporal substitution case)

The solution procedure is analogous to the solution procedure shown in the
previous section. Substitution of (5.72) into (5.71) leads to

_ g A
0 = 1_7Kb+0w%%0ﬂ%6 6+2Mﬂ+r
o2 K A o2
+—02+<— 0—r ——)C +——C% (Al

where we must determine Cy and C] so that the equation holds for all values
of the instantaneous interest rate. Once again, simple inspection of the terms
in the equation shows that the right hand side of the equation is a linear
combination of the instantaneous interest rate. Thus Cy and C; must be
such that both the intercept and the slope of the linear equation are zero
simultaneously. This leads to two algebraic equations for Cy and Cf.

The first equation obtains from collecting terms in r in (A15) and setting
them to zero:

SNACRRLYSANE Y (A16)
Y

This equation is identical to (A13) with Ay = 8. The second equation is

again linear in Cy given C7, and obtains by collecting all other terms in
(A15).

2.3.3 Coefficients of the value function in the model with
stochastic volatility and recursive utility (unit elastic-
ity of intertemporal substitution case)

Substitution of guess I = exp{Cy + C1¢;} into (5.85) leads to

N2
0 = Blogf—p— il log(l—'y)—kwq—kr
L—n 2y
1 PpeOq bp — T K
—Eﬁ(COﬂLCM)ﬂL(Pq o e )y+1_q (Hq_Q)>01
2 2 2
PPq7q o2 q 2
+ Ci + —/———qC7. Al7

where we must determine Cy and C] so that the equation holds for all values
of precision g;. Once again, simple inspection of the terms in the equation

12
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shows that the right hand side of the equation is a linear combination of
gt Thus Cy and €7 must be such that both the intercept and the slope of
the linear equation are zero simultaneously. This leads to the following two
algebraic equations for Cy and Cf:

= aC? +bCy +c, (A18)
= (1—=7)(BlogB+1r—pB) = Bylog (1 —v) — BCo + ketC1{A19)
where
a = 073[7(1—,02)—#,02] (A20)
2y (1—7) Pl Phal
b — Preq(ttp — 1) _/3+/£q’ (A21)
Y I—v
_ (p — 7")2
c = T (A22)

Equation(A18) is a quadratic equation in C}, and equation (A19) is
linear in Cy given C;. For general parameter values the equation for C; has
two roots. These roots are always real provided that v > 1. From standard
theory on quadratic equations, the product of the roots is equal to c¢/a.
When « > 1, this ratio is always negative so that the roots have opposite
signs. It is easy to check that only the negative root maximizes the value
function for all values of ¢;.! This root is obtained by selecting the positive
root of the discriminant of the quadratic equation. Therefore, C7; < 0 when
v > 1

When v < 1, the roots are real—and a solution to the problem exists—if

and only if
1 —yoq(pp —1) oq(pp —1)
2 + ) <1
< gl B+ Kq PPq B+ Kq

This condition implies that both roots of the quadratic equation are positive.
In this case the largest root—again, the root associated with the positive
root of the discriminant—maximizes the value function. Therefore, C7 > 0
when v < 1. Putting together the results for v > 1 and 7 < 1, we have that
o :Cl/(l —7) > 0.

!Note that the equation for B implies that dCo/0C1 > 0.

13
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2.4 Derivation of selected mathematical results in
Chapter 6

2.4.1 Optimal consumption and portfolio choice for retired
investors
Optimal portfolio rule

A retired investor does not have labor income. Thus he faces the in-
tertemporal budget constraint

I/V[H = (W —C%) (1 + R;,t+1) )

whose loglinear approximation is given in equation (3.4) in text. To facilitate
comparisons with the labor income case, it is convenient to rewrite (3.4) as
follows:

wi iy —wr = k" — pp(cf —we) +1p 441 (A23)

where pl = —(1 —1/p) = exp{E[¢" —w¢|}/(1 — exp{E[¢" — w¢]}), and k" =
—(1 4 pf)log(1 + pl) + pLlog(pl). Note that (A23) holds exactly when the
consumption-wealth ratio is constant—as it is in this case.

We have also shown in this appendix that we can approximate the log
portfolio return with the following expression:

1
Tpt+1 = Tp+ ou(rern —7p) + gou(l - ay)os. (A24)

This is equation (2.21) when investment opportunities are constant.

We have shown in section 2.2.3 that the Euler equation for an investor
with power utility of consumption and no labor income implies the following
expression for the risk-premium on the risky asset (see equation [2.43]):

1
Etreq1 —7p + 5 Var (r441) = 7 Covy (c;_H — cg,rtﬂ) . (A25)
or, given our assumptions about the investment opportunity set,

1
p+ =02 =~ Covy (chy1 — ¢ regn) - (A26)

We can compute the covariance term in the right-hand side of equation
(A26) by noting that (6.42) implies

¢y — ¢ = bl (wi  —wy), (A27)

14
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so that
T T T T
Covy (Ct+1 — Ctﬂ“t+1) = b] Cov, (th — wt,rtH)
= b Covy (rp,t41,7e+1)
ror 2
blat Ous

where the second equality obtains from (A23), and the third equality obtains
from (A24).
Therefore,
ror 2

1
1+ 503 =biajoy,

from which (6.43) in text follows.
Optimal consumption rule

To derive the optimal consumption rule, note that the log of the Euler
equation (6.41) with ¢ = p yields the following equation for expected log
consumption growth:

1 1
Et [ —¢] = 5 E [r} 1] +1logé" + B} Var [r] 0 =7 (ciy1 — Cm] )
(A28)
where 6" = (1 — 7%)8, and I have suppressed the subscript ¢ from the con-
ditional moments on the right-hand-side because af = o implies that they
are constant. Moreover, equation (A27) implies Vary[ry ;1 —7(cj;1 —¢f)] =
(1= b1y)* Var(ry, ).
On the other hand, from equation (A27) and the log budget constraint
(A23) we have

Ei [ciy1 —cf] = 0Bt [wiyq —wil
= VI E [rp 1] — bipebp + b1 4 b7 % (1 — b7) wi(A29)

Equalizing the right-hand side of equations (A28) and (A29), and iden-
tifying coefficients, we obtain two equations. The first one implies

b=1,
while the second one implies
1 1 1
by = — ——b | E|r; + —log 6"
5 = () |G %) mlial =5
1 r_\2 r .
+Z (1 —0biy)" Var (r},,41) — bIK"| . (A30)

15
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Since b] = 1, we have b = E[c] —w;] = log(p,) —log(1 + pi.). We can easily
substitute the log-linearization constants p. and k" out from equation (A30)
and obtain

1 1 1
y = log <1 —exp{[(; —b’i) E [rpei1] + ;10g6r + —

> (1 —b7y)* Var (rgytﬂ)} })

(A31)
2.4.2 Optimal consumption and portfolio choice for employed
investors

To derive the optimal portfolio rule in the employment state we first need to
derive loglinear expressions for the intertemporal budget constraint (6.39)
and the Euler equation (6.40) for an employed investor.

Loglinear intertemporal budget constraint

We can rewrite the intertemporal budget constraint (6.39) as

W¢E W, C¢ L
t41 <1+_t __t> <_t> thH,
L1 Ly Ly Lyt ’

or, in logs,
wiy — lep1 = log (exp {w — It} —exp{cf —lt}) — Alpy1 + 715,41 (A32)

We can now linearize equation (A32) by taking a first-order Taylor ex-
pansion around (¢f — ly) = E[¢§ — l¢] and (w§ — l;) = E[w§ — [;]. This gives

Wiy — b1 =K+l (we — 1) — pe (¢f —l) — Al +71p441,  (A33)

where
e = exp {E[wf§ — I]}
Pow = 1+ exp {E[wte — lt]} — exp {E[Cf _ lt]}, (A34)
- exp {E[¢f — I}
Pe 1+ exp {E[w§ — ]} — exp {E[cf — 1]}’ (A35)
and

ke = —(1 = pi + pc) log(1 — py, + p) — py log(py) + pglog(ps).  (A36)

Note that p¢,, p¢ > 0 because W; + L; — C§ > 0 along the optimal path.

16



CHAPTER 2. APPENDIX: MATHEMATICAL DERIVATIONS

Loglinear Euler equation

We can write equation (6.40) as

1 = 7 By [exp {logd — (cfy1 —cf) + et }]
+ (1 —7) e [exp {log 8" — v (41 — ¢f) +Tig+1}]
= 7° Erfexp{wea}] + (1 —7°) B [exp{yri1}] (A37)

where the notational correspondence between the first and second line is
obvious, and §" = (1 — 7%)§. Taking a second order Taylor expansion of

exp {x¢11} and exp {ys41} around Ty = Eq [w441] and ¥y = Ey [y441] we can
write:

1

1 ~ n°E {exp {m} <1 (@ = T) + 5 (@ _ftﬁ)}

+(1—7° B [exp {:} <1 + Y1 —7) + % e _yt)Qﬂ

= mCexp (T} <1 +% Var, (xt+1)> +(1—7°) exp {7, } <1 +% Var, (ym)) .

Finally, a first-order Taylor expansion around zero gives
1~ 7 <1 + T + % Vary ($t+1)> + (1 —7°) (1 +7; + % Vary (yt+1)> ,
or
0 = ~=° (log(5 —~E, [cf_H — cf] + E¢ [ri,t41] (A38)
gV g =7 (e = )
+ (1 —7°) (log 0" — ~Ey [c§+1 — cﬂ + E¢ [7i641]

1
§Vart [7“1'71:-4-1 - (C:Jrl - Cf)]) :

Optimal portfolio rule

We start guessing the functional form of the optimal policies in the em-
ployment state is:

ci =l = by+07(w—1t), (A39)

af = af.
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Note that we can also write the optimal consumption policy in the retirement
state (6.42) in the same form as equation (77?):

Criq — L1 = 0y + 07 (wep1 — li41) (A40)

where 0] = 1.
Subtracting the log Euler equation (A38) for 7,441 = ry from the log
Euler equation (A38) for 7411 = 741 yields:

1
BEtrg41 —rp + 5 Varg (re41) = @ Covy (Cf+1 - Cfﬂ“tﬂ)
+7 (1 — 7€) Covy (cfyq — ¢, req1 ) (A4L)

But equations (A39) and (A40), the log-linear intertemporal budget con-
straint (A33) and the trivial equality

i1 — ¢ = (1 — b)) — (¢f —1e) + (b1 — lo), (A42)
imply that
Covi (cjp1 = cfsrer1) = Cove (birp g + (1= b1) (lera — 1) ,7e41)
= bafol +(1-1b) Teu, (A43)

for s = e, r. The second line follows from the assumptions on asset returns
and labor income. Substituting back into equation (A41) and using equation
(A26) we find

1
pot 5ot =y [T+ (1) afod +7° (1= b)) ow] . (AdY)

from which equation (6.45) in text obtains immediately.

Optimal consumption rule

The log-Euler equation (A38) for i = p and the trivial equality (A42)
imply

T B [cf1 — lipa] + (1= 7€) Ee [cfyy — lipa] = (¢f —U) +Tf,  (A45)
where

1
Ty =7T°= <E 7o e1] + 5 Ve +nlogd + (1 — 7€) log 6r> —g, (A46)

==
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and
Ve = [m(1=0§0)? + (1= 7) (1 = b{v)?] Var[rg, ]
+7éy(1 — bY) Var[Al4]
—2me(1 = 9b§)(1 — b€) Covlrt, ., Alpsa]. (A47)

If we substitute equations (A39) and (A40) into equation (A45) we obtain
50 + 51 E: [wt+1 — lt—i—l] =7+ bS + bi (wt — lt) , (A48)

where by = 7b§+ (1 —m¢)bj; and by = m¢b$ + (1 —7€)b}. Further substitution
of the log budget constraint in the employment state (A33) and guess (A39)
in the left-hand side of equation (A48) yields

bo + b1 (p5, — pebs) (wy — 1) + by (k€ — pibG — g + E75,41)
=T BB (wf — 1)

Identifying coefficients on both sides of this equation we get the following
two-equation system:

b1 (py — p7) = b,
bo+b1(ke—p§b8—g+Er§7t+1) = T°+0b.

We can solve this system recursively, since the first equation depends only
on b{ and the second on b and bf.

Simple algebraic manipulation of the first equation gives the following
quadratic equation for b§:

0= 7mp¢ (b5)* + [1 — wpE, + (1 — 7°) p&] b5 — (1 — 7©) p5,. (A49)

The expression for bf is given by

with ~
k1= (1—7°) + pib1 > 0. (A51)
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